269 research outputs found

    Analysis and synthesis of leaky-wave devices in planar technology

    Get PDF
    [ESP] ] El trabajo llevado a cabo durante la realización de esta tesis doctoral, se ha centrado en el análisis y síntesis de dispositivos de microondas en tecnología planar. En concreto, se han estudiado diferentes tipos de dispositivos basados en radiación por ondas de fuga "leaky waves", en los cuales las propiedades de radiación están determinadas por la constante de fase del modo "leaky" que es el que determina el ángulo de apuntamiento y por la tasa de radiación que es la que determina la intensidad de los campos radiados. De esta manera, controlando en amplitud y fase el modo "leaky" se puede obtener un control efectivo sobre el diagrama de radiación del dispositivo. Además, con el objetivo de poder obtener de una manera más eficiente las características de propagación de los modos de fuga "leaky" en función de los principales parámetros geométricos de la estructura, se han desarrollado diversas herramientas de análisis modal basadas en la técnica de resonancia transversa de la estructura. La capacidad para obtener un control simultáneo de la constante de propagación compleja del modo "leaky", ha sido demostrada mediante el diseño y fabricación de varios tipos de antena "leaky wave" (LWA) y de otros dispositivos como multiplexores y sistemas de enfoque en campo cercano. Para ello, se ha utilizado la tecnología planar de guía de onda integrada en sustrato (susbstrate integrated waveguide, SIW). Esta recientemente desarrollada tecnología, permite diseñar dispositivos de microondas basados en tecnología clásica de guía de ondas con sistemas de fabricación estándar usados en tecnología de circuitos impresos (printed circuit board, PCB). De esta forma, se pueden integrar en un mismo sustrato muchas de las diferentes partes que forman un sistema de comunicaciones, mejorando así su robustez y compactibilidad, además de reducir el coste y de contar con menores pérdidas que otras tecnologías planares como la microstrip. [ENG] The work developed along this doctoral thesis has been focused on the analysis and synthesis of microwave devices in planar technology. In particular, several types of devices based on the radiation mechanism of leaky waves have been studied. Typically, the radiation properties in leaky-wave devices are determined by the complex propagation constant of the leaky mode, wherein the phase constant is responsible for the pointing angle and the leakage rate for the intensity of the radiated fields. In this manner, by controlling both amplitude and phase of the leaky mode, an effective control over the device's radiation diagram can be obtained. Moreover, with the purpose of efficiently obtaining the leaky mode's radiation properties as function of the main geometrical parameters of the structure, several modal tools based on the transverse resonance analysis of the structure have been performed. In order to demonstrate this simultaneous control over the complex propagation constant in planar technology, several types of leaky-wave devices, including antennas (LWAs), multiplexors and near-field focusing systems, have been designed and manufactured in the technology of substrate integrated waveguide (SIW). This recently proposed technology, allows the design of devices based on classical waveguide technology with standard manufacturing techniques used for printed circuit board (PCB) designs. In this way, most of the parts that form a communication system can be integrated into a single substrate, thus reducing its cost and providing a more robust and compact device, which has less losses compared to other planar technologies such as the microstrip.Universidad Politécnica de Cartagen

    Spatially integrated erbium-doped fiber amplifiers enabling space-division multiplexing

    Get PDF
    L'augmentation exponentielle de la demande de bande passante pour les communications laisse présager une saturation prochaine de la capacité des réseaux de télécommunications qui devrait se matérialiser au cours de la prochaine décennie. En effet, la théorie de l’information prédit que les effets non linéaires dans les fibres monomodes limite la capacité de transmission de celles-ci et peu de gain à ce niveau peut être espéré des techniques traditionnelles de multiplexage développées et utilisées jusqu’à présent dans les systèmes à haut débit. La dimension spatiale du canal optique est proposée comme un nouveau degré de liberté qui peut être utilisé pour augmenter le nombre de canaux de transmission et, par conséquent, résoudre cette menace de «crise de capacité». Ainsi, inspirée par les techniques micro-ondes, la technique émergente appelée multiplexage spatial (SDM) est une technologie prometteuse pour la création de réseaux optiques de prochaine génération. Pour réaliser le SDM dans les liens de fibres optiques, il faut réexaminer tous les dispositifs intégrés, les équipements et les sous-systèmes. Parmi ces éléments, l'amplificateur optique SDM est critique, en particulier pour les systèmes de transmission pour les longues distances. En raison des excellentes caractéristiques de l'amplificateur à fibre dopée à l'erbium (EDFA) utilisé dans les systèmes actuels de pointe, l'EDFA est à nouveau un candidat de choix pour la mise en œuvre des amplificateurs SDM pratiques. Toutefois, étant donné que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs à fibre dopée à l'erbium spatialement intégrés (SIEDFA) nécessitent une conception soignée. Dans cette thèse, nous examinons tout d'abord les progrès récents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite à cela, la théorie des EDFA est brièvement présentée et une modélisation numérique pouvant être utilisée pour simuler les SIEDFA est proposée. Sur la base d'un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres à quelques-modes dopées à l'erbium (ED-FMF) et nous évaluons numériquement la performance d’un amplificateur à un étage, avec fibre à dopage annulaire, à ainsi qu’un amplificateur à double étage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopées à l'erbium avec une gaine annulaire et multi-cœurs (ED-MCF). Nous avons évalué numériquement le recouvrement de la pompe avec les multiples cœurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractérisons une fibre multi-cœurs à quelques modes dopées à l'erbium. Nous réalisons la première démonstration des amplificateurs à fibre optique spatialement intégrés incorporant de telles fibres dopées. Enfin, nous présentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le développement des SIEDFA offriront d'énormes avantages non seulement pour les systèmes de transmission future SDM, mais aussi pour les systèmes de transmission monomode sur des fibres standards à un cœur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intégré.The exponential increase of communication bandwidth demand is giving rise to the so-called ‘capacity crunch’ expected to materialize within the next decade. Due to the nonlinear limit of the single mode fiber predicted by the information theory, all the state-of-the-art techniques which have so far been developed and utilized in order to extend the optical fiber communication capacity are exhausted. The spatial domain of the lightwave links is proposed as a new degree of freedom that can be employed to increase the number of transmission paths and, subsequently, overcome the looming ‘capacity crunch’. Therefore, the emerging technique named space-division multiplexing (SDM) is a promising candidate for creating next-generation optical networks. To realize SDM in optical fiber links, one needs to investigate novel spatially integrated devices, equipment, and subsystems. Among these elements, the SDM amplifier is a critical subsystem, in particular for the long-haul transmission system. Due to the excellent features of the erbium-doped fiber amplifier (EDFA) used in current state-of-the-art systems, the EDFA is again a prime candidate for implementing practical SDM amplifiers. However, since the SDM introduces a spatial variation of the field in the transverse plane of the optical fibers, spatially integrated erbium-doped fiber amplifiers (SIEDFA) require a careful design. In this thesis, we firstly review the recent progress in SDM, in particular, the SDM optical amplifiers. Next, we identify and discuss the key issues of SIEDFA that require scientific investigation. After that, the EDFA theory is briefly introduced and a corresponding numerical modeling that can be used for simulating the SIEDFA is proposed. Based on a home-made simulation tool, we propose a novel design of an annular based doping profile of few-mode erbium-doped fibers (FM-EDF) and numerically evaluate the performance of single stage as well as double-stage few-mode erbium-doped fiber amplifiers (FM-EDFA) based on such fibers. Afterward, we design annular-cladding erbium-doped multicore fibers (MC-EDF) and numerically evaluate the cladding pumped multicore erbium-doped fiber amplifier (MC-EDFA) based on these fibers as well. In addition to fiber design, we fabricate and characterize a multicore few-mode erbium-doped fiber (MC-FM-EDF), and perform the first demonstration of the spatially integrated optical fiber amplifiers incorporating such specialty doped fibers. Finally, we present the conclusions as well as the perspectives of this research. In general, the investigation and development of the SIEDFA will bring tremendous benefits not only for future SDM transmission systems but also for current state-of-the-art single-mode single-core transmission systems by replacing plural amplifiers by one integrated amplifier

    High-multiplicity space-division multiplexed transmission systems

    Get PDF

    High-multiplicity space-division multiplexed transmission systems

    Get PDF

    Development of High-power Single-mode Yb-doped Fiber Amplifiers and Beam Analysis

    Get PDF
    High-power fiber laser systems enjoy a widespread use in manufacturing, medical, and defense applications as well as scientific research, due to their remarkable power scalability, high electrical to optical efficiency, compactness and ruggedness. However, single-mode fiber power scaling has stagnated in the past years, primarily due to the onset of nonlinear effects such as stimulated Brillouin/Raman scattering and transverse modal instabilities. This thesis addresses the analysis and mitigation of transverse modal instabilities in high-power fiber amplifiers. I describe the high-power fiber amplifier testbed that I set up to test fibers fabricated in house. I will show our results of a Yb-doped fiber amplifier with more than 2.2 kW signal power and beam quality of 1.1 M2. In consequence, I demonstrate mode-selective amplification in a large mode-area Yb-doped fiber using a 3-mode photonic lantern. All three modes were amplified to above 4 W with OSNRs higher than 16 dB. In addition, I show a novel high-speed beam analysis technique to study transverse modal instabilities. To guide fiber designs, I developed a GPU accelerated simulation suite to study the dynamics that occur in high-power fiber amplifiers. A 64 x 64 spatial grid, with 6000 time- and 20000 distance-steps can be solved at 2 min/meter on a GeForce GTX 1080 Ti. Based on these simulations, I will show dynamic transverse modal instability mitigation strategies that rely on mode modulation

    Design of Low-Power NRZ/PAM-4 Wireline Transmitters

    Get PDF
    Rapid growing demand for instant multimedia access in a myriad of digital devices has pushed the need for higher bandwidth in modern communication hardwares ranging from short-reach (SR) memory/storage interfaces to long-reach (LR) data center Ethernets. At the same time, comprehensive design optimization of link system that meets the energy-efficiency is required for mobile computing and low operational cost at datacenters. This doctoral study consists of design of two low-swing wireline transmitters featuring a low-power clock distribution and 2-tap equalization in energy-efficient manners up to 20-Gb/s operation. In spite of the reduced signaling power in the voltage-mode (VM) transmit driver, the presence of the segment selection logic still diminishes the power saving benefit. The first work presents a scalable VM transmitter which offers low static power dissipation and adopts an impedance-modulated 2-tap equalizer with analog tap control, thereby obviating driver segmentation and reducing pre-driver complexity and dynamic power. Per-channel quadrature clock generation with injection-locked oscillators (ILO) allows the generation of rail-to-rail quadrature clocks. Energy efficiency is further improved with capacitively driven low-swing global clock distribution and supply scaling at lower data rates, while output eye quality is maintained at low voltages with automatic phase calibration of the local ILO-generated quarter-rate clocks. A prototype fabricated in a general purpose 65 nm CMOS process includes a 2 mm global clock distribution network and two transmitters that support an output swing range of 100-300mV with up to 12-dB of equalization. The transmitters achieve 8-16 Gb/s operation at 0.65-1.05 pJ/b energy efficiency. The second work involves a dual-mode NRZ/PAM-4 differential low-swing voltage-mode (VM) transmitter. The pulse-selected output multiplexing allows reduction of power supply and deterministic jitter caused by large on-chip parasitic inherent in the transmission-gate-based multiplexers in the earlier work. Analog impedance control replica circuits running in the background produce gate-biasing voltages that control the peaking ratio for 2-tap feed-forward equalization and PAM-4 symbol levels for high-linearity. This analog control also allows for efficient generation of the middle levels in PAM-4 operation with good linearity quantified by level separation mismatch ratio of 95%. In NRZ mode, 2-tap feedforward equalization is configurable in high-performance controlled-impedance or energy-efficient impedance-modulated settings to provide performance scalability. Analytic design consideration on dynamic power, data-rate, mismatch, and output swing brings optimal performance metric on the given technology node. The proof-of-concept prototype is verified on silicon with 65 nm CMOS process with improved performance in speed and energy-efficiency owing to double-stack NMOS transistors in the output stage. The transmitter consumes as low as 29.6mW in 20-Gb/s NRZ and 25.5mW in the 28-Gb/s PAM-4 operations

    Reconfigurable photonic logic architecture

    Get PDF
    The amorphous silicon photo-sensor studied in this thesis, is a double pin structure (p(a-SiC:H)-i’(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts deposited over transparent glass thus with the possibility of illumination on both sides, responding to wave-lengths from the ultra-violet, visible to the near infrared range. The frontal il-lumination surface, glass side, is used for light signal inputs. Both surfaces are used for optical bias, which changes the dynamic characteristics of the photo-sensor resulting in different outputs for the same input. Experimental studies were made with the photo-sensor to evaluate its applicability in multiplexing and demultiplexing several data communication channels. The digital light sig-nal was defined to implement simple logical operations like the NOT, AND, OR, and complex like the XOR, MAJ, full-adder and memory effect. A pro-grammable pattern emission system was built and also those for the validation and recovery of the obtained signals. This photo-sensor has applications in op-tical communications with several wavelengths, as a wavelength detector and to execute directly logical operations over digital light input signals

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design
    • …
    corecore