25 research outputs found

    White Paper 11: Artificial intelligence, robotics & data science

    Get PDF
    198 p. : 17 cmSIC white paper on Artificial Intelligence, Robotics and Data Science sketches a preliminary roadmap for addressing current R&D challenges associated with automated and autonomous machines. More than 50 research challenges investigated all over Spain by more than 150 experts within CSIC are presented in eight chapters. Chapter One introduces key concepts and tackles the issue of the integration of knowledge (representation), reasoning and learning in the design of artificial entities. Chapter Two analyses challenges associated with the development of theories –and supporting technologies– for modelling the behaviour of autonomous agents. Specifically, it pays attention to the interplay between elements at micro level (individual autonomous agent interactions) with the macro world (the properties we seek in large and complex societies). While Chapter Three discusses the variety of data science applications currently used in all fields of science, paying particular attention to Machine Learning (ML) techniques, Chapter Four presents current development in various areas of robotics. Chapter Five explores the challenges associated with computational cognitive models. Chapter Six pays attention to the ethical, legal, economic and social challenges coming alongside the development of smart systems. Chapter Seven engages with the problem of the environmental sustainability of deploying intelligent systems at large scale. Finally, Chapter Eight deals with the complexity of ensuring the security, safety, resilience and privacy-protection of smart systems against cyber threats.18 EXECUTIVE SUMMARY ARTIFICIAL INTELLIGENCE, ROBOTICS AND DATA SCIENCE Topic Coordinators Sara Degli Esposti ( IPP-CCHS, CSIC ) and Carles Sierra ( IIIA, CSIC ) 18 CHALLENGE 1 INTEGRATING KNOWLEDGE, REASONING AND LEARNING Challenge Coordinators Felip Manyà ( IIIA, CSIC ) and Adrià Colomé ( IRI, CSIC – UPC ) 38 CHALLENGE 2 MULTIAGENT SYSTEMS Challenge Coordinators N. Osman ( IIIA, CSIC ) and D. López ( IFS, CSIC ) 54 CHALLENGE 3 MACHINE LEARNING AND DATA SCIENCE Challenge Coordinators J. J. Ramasco Sukia ( IFISC ) and L. Lloret Iglesias ( IFCA, CSIC ) 80 CHALLENGE 4 INTELLIGENT ROBOTICS Topic Coordinators G. Alenyà ( IRI, CSIC – UPC ) and J. Villagra ( CAR, CSIC ) 100 CHALLENGE 5 COMPUTATIONAL COGNITIVE MODELS Challenge Coordinators M. D. del Castillo ( CAR, CSIC) and M. Schorlemmer ( IIIA, CSIC ) 120 CHALLENGE 6 ETHICAL, LEGAL, ECONOMIC, AND SOCIAL IMPLICATIONS Challenge Coordinators P. Noriega ( IIIA, CSIC ) and T. Ausín ( IFS, CSIC ) 142 CHALLENGE 7 LOW-POWER SUSTAINABLE HARDWARE FOR AI Challenge Coordinators T. Serrano ( IMSE-CNM, CSIC – US ) and A. Oyanguren ( IFIC, CSIC - UV ) 160 CHALLENGE 8 SMART CYBERSECURITY Challenge Coordinators D. Arroyo Guardeño ( ITEFI, CSIC ) and P. Brox Jiménez ( IMSE-CNM, CSIC – US )Peer reviewe

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    GSI Scientific Report 2011 [GSI Report 2012-1]

    Get PDF

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented
    corecore