604 research outputs found

    Multirate cascaded discrete-time low-pass ΔΣ modulator for GSM/Bluetooth/UMTS

    Get PDF
    This paper shows that multirate processing in a cascaded discrete-time ΔΣ modulator allows to reduce the power consumption by up to 35%. Multirate processing is possible in a discrete-time ΔΣ modulator by its adaptibility with the sampling frequency. The power reduction can be achieved by relaxing the sampling speed of the first stage and increasing it appropriately in the second stage. Furthermore, a cascaded ΔΣ modulator enables the power efficient implementation of multiple communication standards.@The advantages of multirate cascaded ΔΣ modulators are demonstrated by comparing the performance of single-rate and multirate implementations using behavioral-level and circuit-level simulations. This analysis has been further validated with the design of a multirate cascaded triple-mode discrete-time ΔΣ modulator. A 2-1 multirate low-pass cascade, with a sampling frequency of 80 MHz in the first stage and 320 MHz in the second stage, meets the requirements for UMTS. The first stage alone is suitable for digitizing Bluetooth and GSM with a sampling frequency of 90 and 50 MHz respectively. This multimode ΔΣ modulator is implemented in a 1.2 V 90 nm CMOS technology with a core area of 0.076 mm2. Measurement results show a dynamic range of 66/77/85 dB for UMTS/ Bluetooth/GSM with a power consumption of 6.8/3.7/3.4 mW. This results in an energy per conversion step of 1.2/0.74/2.86 pJ

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 ÎŒW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    14-bit 2.2-MS/s sigma-delta ADC's

    Get PDF

    Design of a wideband low-power continuous-time sigma-delta (ΣΔ) analog-to-digital converter (ADC) in 90nm CMOS technology

    Get PDF
    The growing trend in VLSI systems is to shift more signal processing functionality from analog to digital domain to reduce manufacturing cost and improve reliability. It has resulted in the demand for wideband high-resolution analog-to-digital converters (ADCs). There are many different techniques for doing analog-to-digital conversions. Oversampling ADC based on sigma-delta (ΣΔ) modulation is receiving a lot of attention due to its significantly relaxed matching requirements on analog components. Moreover, it does not need a steep roll-off anti-aliasing filter. A ΣΔ ADC can be implemented either as a discrete time system or a continuous time one. Nowadays growing interest is focused on the continuous-time ΣΔ ADC for its use in the wideband and low-power applications, such as medical imaging, portable ultrasound systems, wireless receivers, and test equipments. A continuous-time ΣΔ ADC offers some important advantages over its discrete-time counterpart, including higher sampling frequency, intrinsic anti-alias filtering, much relaxed sampling network requirements, and low-voltage implementation. Especially it has the potential in achieving low power consumption. This dissertation presents a novel fifth-order continuous-time ΣΔ ADC which is implemented in a 90nm CMOS technology with single 1.0-V power supply. To speed up design process, an improved direct design method is proposed and used to design the loop filter transfer function. To maximize the in-band gain provided by the loop filter, thus maximizing in-band noise suppression, the excess loop delay must be kept minimum. In this design, a very low latency 4-bit flash quantizer with digital-to-analog (DAC) trimming is utilized. DAC trimming technique is used to correct the quantizer offset error, which allows minimum-sized transistors to be used for fast and low-power operation. The modulator has sampling clock of 800MHz. It achieves a dynamic range (DR) of 75dB and a signal-to-noise-and-distortion ratio (SNDR) of 70dB over 25MHz input signal bandwidth with 16.4mW power dissipation. Our work is among the most improved published to date. It uses the lowest supply voltage and has the highest input signal bandwidth while dissipating the lowest power among the bandwidths exceeding 15MHz

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. TiivistelmĂ€. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistĂ€ tĂ€rkeĂ€mmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnĂ€n kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa kĂ€ytetÀÀn ylinĂ€ytteistystĂ€ ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. TĂ€mĂ€n työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjĂ€rjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. YlinĂ€ytteistyssuhde on 25 ja AD muuntimen nĂ€ytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). TĂ€mĂ€ työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmĂ€ esitetÀÀn yksityiskohtaisesti, ja vaatimusten tĂ€yttyminen varmistetaan “top-down” -suunnitteluperiaatteella. LiitteenĂ€ on kertoimien laskemiseen kĂ€ytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkĂ€n silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentĂ€ -DA muunninta. Viivekompensointipolkua kĂ€yttĂ€mĂ€llĂ€ modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. LisĂ€ksi FIR takaisinkytkentĂ€ -DA-muuntimen kĂ€yttö pienentÀÀ kellojitteriherkkyyttĂ€, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyĂ€ ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty perĂ€kkĂ€in integraattoreita myötĂ€kytkentĂ€rakenteella (CIFF) ja toisessa sekĂ€ myötĂ€- ettĂ€ takaisinkytkentĂ€rakenteella (CIFF-B). PÀÀhuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa kĂ€yttĂ€en 0.8 voltin kĂ€yttöjĂ€nnitettĂ€. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. LisĂ€ksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    Design of a 14-bit fully differential discrete time delta-sigma modulator

    Get PDF
    Analog to digital converters play an essential role in modern mixed signal circuit design. Conventional Nyquist-rate converters require analog components that are precise and highly immune to noise and interference. In contrast, oversampling converters can be implemented using simple and high-tolerance analog components. Moreover, sampling at high frequency eliminates the need for abrupt cutoffs in the analog anti-aliasing filters. A noise shaping technique is also used in DS converters in addition to oversampling to achieve a high resolution conversion. A significant advantage of the method is that analog signals are converted using simple and high-tolerance analog circuits, usually a 1-bit comparator, and analog signal processing circuits having a precision that is usually much less than the resolution of the overall converter. In this thesis, a technique to design the discrete time DS converters for 25 kHz baseband signal bandwidth will be described. The noise shaping is achieved using a switched capacitor low-pass integrator around the 1-bit quantizer loop. A latched-type comparator is used as the quantizer of the DS converter. A second order DS modulator is implemented in a TSMC 0.35 ”m CMOS technology using a 3.3 V power supply. The peak signal-to-noise ratio (SNR) simulated is 87 dB; the SNDR simulated is 82 dB which corresponds to a resolution of 14 bits. The total static power dissipation is 6.6 mW

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF
    • 

    corecore