82 research outputs found

    Low power biosensor and decimator design

    Get PDF
    2013 Summer.Includes bibliographical references.This paper examines the use of low power circuits applied to biosensors used to observe neurotransmission. The term "biosensors" in the broadest sense describes many devices which are used to measure a biological state e.g. neural signal acquisition. The methods for developing biosensors are just as diverse, but one common thread is that many biomedical devices are battery operated and require low power for mobility. As biosensors become more complex they also require more functions such as data storage, digital signal processing, RF transmission etc. The more functions a sensor needs, the tighter the constraint for power consumption on a battery operated device becomes. In order to solve this problem, biosensors are increasingly being designed for low power consumption while weighing tradeoffs for performance and noise. Designers accomplish this by lowering the supply voltage, which reduces the overall size, and thus the load, of the devices. The amount of individual components will also be reduced, allowing for a smaller, faster device. Biosensors are important because they grant the ability for scientists to better understand complex biological systems. While many other methods exist for observing biological systems, electrochemistry is a practical method for measuring redox reaction because it senses chemical reactions on the surface of an electrode. The reaction will create a current, which can be interpreted via electronics. With the use of electrochemistry, scientist can cheaply and practically observe changes occurring between cells. On the engineering side, modern silicon processes provide small, tightly packed microelectrodes for high spatial resolution. This allows scientists to detect minute changes over a small spatial range. With an array of electrodes on the scale of 1000s, electrochemistry can be used to record data from a sizable cellular sample. Such an array could be used to identify several biological functions such as communication between cells. By combining known electrochemistry methods with low power circuit designs, we can create a biosensor that can further advance the understanding of the operation of cells, such as neurotransmission. The goal of our project is to create a device that uses electrochemistry to detect a redox reaction between a chemical, such as nitric oxide, and an electrode. The device needs to be battery operated for mobility and it must contain all needed electronics on chip, including amplification, digital signal processing, data transmission etc. This requires a surface of electrodes on chip that can handle the environment needed for a living tissue such as: specific temperature, pH and humidity. In addition, it requires a chip that is low power and which produces little heat. This thesis describes two separate designs, both of which are part of a final biosensor design that will be used for the detection of nitric oxide. The first design is a biosensor microelectrode array. The array will be used along with electrochemistry to detect the release of nitric oxide from a living tissue sample. The electrodes are connected to a chain of electronics for on chip signal processing. The design runs at a voltage of 3V in a 0.6µm CMOS process. The final layout for the microelectrodes measured approximately 4.84mm2 with a total of 8,192 electrodes and consumed 0.310mW/channel. The second design is a low power decimator for a sigma-delta analog to digital converter designed for biomedical applications. The ADC will be used along with a chain of amplifying electronics to interpret the signals received from the microelectrode array. The design runs at a voltage of 0.9V in a 0.18µm CMOS process. Its final layout measured approximately 0.0158mm2 and consumed 3.3uW of power. The ADC and microelectrode array were designed and fabricated separately to ensure their validity as standalone designs

    A CMOS Digital Beamforming Receiver

    Full text link
    As the demand for high speed communication is increasing, emerging wireless techniques seek to utilize unoccupied frequency ranges, such as the mm-wave range. Due to high path loss for higher carrier frequencies, beamforming is an essential technology for mm-wave communication. Compared to analog beamforming, digital beamforming provides multiple simultaneous beams without an SNR penalty, is more accurate, enables faster steering, and provides full access to each element. Despite these advantages, digital beamforming has been limited by high power consumption, large die area, and the need for large numbers of analog-to-digital converters. Furthermore, beam squinting errors and ADC non-linearity limit the use of large digital beamforming arrays. We address these limitations. First, we address the power and area challenge by combining Interleaved Bit Stream Processing (IL-BSP) with power and area efficient Continuous-Time Band-Pass Delta-Sigma Modulators (CTBPDSMs). Compared to conventional DSP, IL-BSP reduces both power and area by 80%. Furthermore, the new CTBPDSM architecture reduces ADC area by 67% and the energy per conversion by 43% compared to previous work. Second, we introduce the first integrated digital true-time-delay digital beamforming receiver to resolve the beam squinting. True-time-delay beamforming eliminates squinting, making it an ideal choice for large-array wide-bandwidth applications. Third, we present a new current-steering DAC architecture that provides a constant output impedance to improve ADC linearity. This significantly reduces distortion, leading to an SFDR improvement of 13.7 dB from the array. Finally, we provide analysis to show that the ADC power consumption of a digital beamformer is comparable to that of the ADC power for an analog beamformer. To summarize, we present a prototype phased array and a prototype timed array, both with 16 elements, 4 independent beams, a 1 GHz center frequency, and a 100 MHz bandwidth. Both the phased array and timed array achieve nearly ideal conventional and adaptive beam patterns, including beam tapering and adaptive nulling. With an 11.2 dB array gain, the phased array achieves a 58.5 dB SNDR over a 100 MHz bandwidth, while consuming 312 mW and occupying 0.22 mm2. The timed array achieves an EVM better than -37 dB for 5 MBd QAM-256 and QAM-512, occupies only 0.29 mm2, and consumes 453 mW.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147716/1/smjang_1.pd

    Extended frequency-band-decomposition sigma–delta A/D converter

    No full text
    Parallelism can be used to increase the bandwidths of ADC converters based on sigma–delta modulators. Each modulator converts a part of the input signal band and is followed by a digital filter. Unfortunately, solutions using bandpass sigma–delta modulators are very sensitive to the position of the modulators' central frequencies. This paper shows the feasibility of a frequency-band-decomposition (FBD) ADC using continuous time bandpass sigma–delta modulators, even in the case of large analog mismatches. The major benefit of such a solution, called extended-frequency-band-decomposition (EFBD) is its low sensitivity to analog parameters. For example, a relative error in the central frequencies of 4% can be accepted without significant degradation in the performance (other published FBD ADCs require a precision of the central frequencies better than 0.1%). This paper will focus on the performance which can be reached with this system, and the architecture of the digital part. The quantization of coefficients and operators will be addressed. It will be shown that a 14 bit resolution can be theoretically reached using 10 sixth-order bandpass modulators at a sampling frequency of 800 MHz which results in a bandwidth of 80 MHz centered around 200 MHz (the resolution depends on the effective quality factor of the filters of the analog modulators)

    Programmable CMOS Analog-to-Digital Converter Design and Testability

    Get PDF
    In this work, a programmable second order oversampling CMOS delta-sigma analog-to-digital converter (ADC) design in 0.5µm n-well CMOS processes is presented for integration in sensor nodes for wireless sensor networks. The digital cascaded integrator comb (CIC) decimation filter is designed to operate at three different oversampling ratios of 16, 32 and 64 to give three different resolutions of 9, 12 and 14 bits, respectively which impact the power consumption of the sensor nodes. Since the major part of power consumed in the CIC decimator is by the integrators, an alternate design is introduced by inserting coder circuits and reusing the same integrators for different resolutions and oversampling ratios to reduce power consumption. The measured peak signal-to-noise ratio (SNR) for the designed second order delta-sigma modulator is 75.6dB at an oversampling ratio of 64, 62.3dB at an oversampling ratio of 32 and 45.3dB at an oversampling ratio of 16. The implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ΔIDDQ testing of CMOS data converters is also presented. The BICS uses frequency as the output for fault detection in CUT. A fault is detected when the output frequency deviates more than ±10% from the reference frequency. The output frequencies of the BICS for various model parameters are simulated to check for the effect of process variation on the frequency deviation. A design for on-chip testability of CMOS ADC by linear ramp histogram technique using synchronous counter as register in code detection unit (CDU) is also presented. A brief overview of the histogram technique, the formulae used to calculate the ADC parameters, the design implemented in 0.5µm n-well CMOS process, the results and effectiveness of the design are described. Registers in this design are replaced by 6T-SRAM cells and a hardware optimized on-chip testability of CMOS ADC by linear ramp histogram technique using 6T-SRAM as register in CDU is presented. The on-chip linear ramp histogram technique can be seamlessly combined with ΔIDDQ technique for improved testability, increased fault coverage and reliable operation

    Study and application of direct RF power injection methodology and mitigation of electromagnetic interference in ADCs

    Get PDF
    There are many publications available in literature regarding the DPI (Direct Power Injection) technique for electronic systems, but few works specifically addressed for mixed-signal converters, which are components existent in almost all electronic devices. IEC 62132-4(International Electrotechnical Commission, 2006) and 62132-1(International Electrotechnical Commission, 2006) standards describe a method for measuring immunity of integrated circuits (IC) in the presence of conducted RF disturbances. This method ensures a high degree of repeatability and correlation of immunity measurements. Knowledge of the electromagnetic immunity of an IC allows the designer to decide if the system will need external protection, and how much effort should be directed to this solution. In this context, the purpose of this work is the study and application of the DPI methodology for injection of EMI in a mixed-signal programmable device, evaluating mitigation possibilities, with special focus on the analog-to-digital converters (ADCs). The main objective is to evaluate the impact of electromagnetic interference (EMI) on different converters (two Successive Approximation Register ADCs, operating with distinct sampling rate and a Sigma-Delta ADC) of the Cypress Semiconductor Programmable SoC (System-on-Chip), PSoC 5LP. Additionally a previously proposed fault tolerance methodology, based on triplication with hardware and time diversity is tested. Results show distinct behaviors of each converter to conducted EMI. Finally, the tested tolerance technique showed to be suitable to reduce error rate of such data acquisition system operating under EMI disturbance.Existem muitas publicações disponíveis na literatura sobre a técnica de DPI (Direct Power Injection ou injeção direta de energia) para sistemas eletrônicos, mas poucos trabalhos direcionados para conversores de sinais mistos, que são componentes existentes em quase todos os dispositivos eletrônicos. As normas IEC 62132-4 (IEC, 2006) e 62132-1 (IEC, 2006) descrevem um método para medir a imunidade de circuitos integrados (CI) na presença de distúrbios de RF conduzidos. Este método garante um alto grau de repetibilidade e correlação das medições da imunidade. O conhecimento da imunidade eletromagnética de um CI permite que o projetista decida se o sistema precisará de proteção externa e quanto esforço deve ser direcionado para esta solução. Nesse contexto, o objetivo deste trabalho é o estudo e aplicação da metodologia DPI para injeção de interferência eletromagnética em um dispositivo programável de sinal misto, avaliando as possibilidades de mitigação, com foco especial em conversores analógico-digitais (ADCs). O principal objetivo é avaliar o impacto da interferência eletromagnética em diferentes conversores (dois ADCs baseados em aproximação sucessiva, operando com taxa de amostragem distintas e um ADC do tipo Sigma-Delta) do SoC(System-on-Chip) programável da Cypress Semiconductor, PSoC 5LP. Além disso, é testada uma metodologia de tolerância a falhas proposta anteriormente, baseada em triplicação com diversidade de hardware e temporal. Os resultados mostram comportamentos distintos de cada conversor para a interferência eletromagnética conduzida. Finalmente, a técnica de tolerância testada mostrou-se adequada para reduzir a taxa de erros desse sistema de aquisição de dados operando sob perturbação eletromagnética

    Design and VLSI implementation of a decimation filter for hearing Aid applications

    Get PDF
    Approximately 10% of the world’s population suffers from some type of hearing loss, yet only small percentage of this statistic use the hearing aid. The stigma associated with wearing a hearing aid, customer dissatisfaction with hearing aid performance, the cost and the battery life. Through the use of digital signal processing the digital hearing aid now offers what the analog hearing aid cannot offer. Currently lot of attention is being given to low power VLSI design. More and more people around the world suffer from hearing losses. The increasing average age and the growing population are the main reasons for this. The decimation filter used for hearing aid applications is designed and implemented both in MATLAB and VHDL. The decimation filter is designed using the distributed arithmetic multiplier in VHDL. Each digital filter structure is simulated using Matlab and its complete architecture is captured using Simulink. The resulting architecture is hardware efficient and consumes less power compared to conventional decimation filters. Compared to the comb-FIR-FIR architecture, the designed decimation filter architecture using Comb-half band FIR-FIR contributes to a hardware saving and reduces the power dissipation

    Design and Implementation of an RF Front-End for Software Defined Radios

    Get PDF
    Software Defined Radios have brought a major reformation in the design standards for radios, in which a large portion of the functionality is implemented through pro­ grammable signal processing devices, giving the radio the ability to change its op­ erating parameters to accommodate new features and capabilities. A software radio approach reduces the content of radio frequency and other analog components of the traditional radios and emphasizes digital signal processing to enhance overall receiver flexibility. Field Programmable Gate Arrays (FPGA) are a suitable technology for the hardware platform as they offer the potential of hardware-like performance coupled with software-like programmability. Software defined radio is a very broad field, encompassing the design of various technologies all the way from the antenna to RF, IF, and baseband digital design. The RF section primarily consists of analog hardware modules. The IF and baseband sections are primarily digital. It is the general process of the radio to convert the incoming signal from RF to IF and then IF to baseband for better signal processing system. In this thesis, some of major building blocks of a Software defined radio are de­ signed and implemented using FPGAs. The design of a Digital front end, which provides the bridge between the baseband and analog RF portions of a wireless receiver, is synthesized. The Digital front end receiver consists of a digital down converter(DDC) which in turn comprises of a direct digital frequency synthesizer (DDFS), a phase accumulator and a low pass filter. The signal processing block of the DDFS is executed using Co-ordinate Rotation Digital Computer (CORDIC) iii Abstract algorithm. Cascaded-Integrator-Comb filters (CIC) are implemented for changing the sample rate of the incoming data. Application of a DDC includes software ra­ dios, multicarrier, multimode digital receivers, micro and pico cell systems,broadband data applications, instrumentation and test equipment and in-building wireless tele­ phony. Also, in this thesis, interfaces for connecting Texas Instruments high speed and high resolution Analog-to-Digital converters (ADC) and Digital-to-Analog converters (DAC) with Xilinx Virtex-5 FPGAs are also implemented and demonstrated

    Broadband Direct RF Digitization Receivers

    Full text link
    corecore