78 research outputs found

    Study of a Time Assisted SAR ADC

    Get PDF
    The demand for low power systems has been increasing in recent years and Analogto- Digital Converters (ADCs) are key blocks of many of these systems as they convert a physical quantity into the digital domain so that this information can be further processed or stored using digital techniques. Data Converters based on Charge Redistribution using of Successive Approximation Registers (SAR) are becoming one of the most popular ADC architectures for moderate speed, medium resolution and low power applications. Due to their low analog complexity SAR ADCs benefit from technology scaling. However, this scaling often comes with a supply voltage reduction and the noise levels do not decrease at the same rate, which translates into a performance decrease. Therefore, new opportunities emerge to explore other physical quantities such as time, frequency, phase or charge in the circuit. This thesis focuses on studying how the time domain information can be used to increase the performance of SAR ADCs. To do so, a new SAR ADC architecture is proposed in which a Time-to-Digital Converter (TDC) is used to convert the time domain information, provided by the comparator, into the digital domain. This new architecture was modelled in MATLAB as a 12 bit TDC assisted SAR ADC, using information from electrical simulations of the comparator and the TDC, designed in Cadence in 65 nm ST Microelectronics CMOS technology. Simulation results demonstrated that, to achieve a better performance when compared to more traditional SAR structures, the TDC energy and latency should be minimized. Another limiting factor was the large voltage range in which only 1 bit could be extracted from the time-to-voltage conversion by the TDC due to the comparator’s fast response in this range. The proposed architecture was also extended to incorporate a Bypass Window in the time domain, which allowed to substantially decrease the number of clock cycles necessary to solve the 12 bits of the ADC

    A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1 V Power Scalable SAR ADC for Sensor Applications

    Get PDF
    A power-scalable SAR ADC for sensor applications is presented. The ADC features a reconfigurable 5-to-10-bit DAC whose power scales exponentially with resolution. At low resolutions where noise and linearity requirements are reduced, supply voltage scaling is leveraged to further reduce the energy-per-conversion. The ADC operates up to 2 MS/s at 1 V and 5 kS/s at 0.4 V, and its power scales linearly with sample rate down to leakage levels of 53 nW at 1 V and 4 nW at 0.4 V. Leakage power-gating during a SLEEP mode in between conversions reduces total power by up to 14% at sample rates below 1 kS/s. Prototyped in a low-power 65 nm CMOS process, the ADC in 10-bit mode achieves an INL and DNL of 0.57 LSB and 0.58 LSB respectively at 0.6 V, and the Nyquist SNDR and SFDR are 55 dB and 69 dB respectively at 0.55 V and 20 kS/s. The ADC achieves an optimal FOM of 22.4 fJ/conversion-step at 0.55 V in 10-bit mode. The combined techniques of DAC resolution and voltage scaling maximize efficiency at low resolutions, resulting in an FOM that increases by only 7x over the 5-bit scaling range, improving upon a 32x degradation that would otherwise arise from truncation of bits from an ADC of fixed resolution and voltage.United States. Defense Advanced Research Projects AgencyNatural Sciences and Engineering Research Council of Canad

    DESIGN OF LOW-POWER LOW-VOLTAGE SUCCESSIVE-APPROXIMATION ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Capacitance-to-Digital Converter for Ultra-Low-Power Wireless Sensor Nodes

    Get PDF
    Power consumption is one of the main design constraints in today’s integrated circuits. For systems like wearable electronics, UAVs, IOT systems powered by batteries which are charged using the energy harvested from various sources like RF, Thermal, Solar and Vibration, ultra-low power consumption is paramount. In these systems, Transducers which convert physical parameters into electrical parameters and the analog-to-digital converters (ADCs) are key components as the interface between the analog world and the digital domain. This thesis addresses the design challenges, strategies, as well as circuit techniques of ultra-low-power signal Front End used in several low power electronic systems in general and pressure measurement systems in particular. In this thesis, Capacitance to Digital Converter based pressure measurement system has been implemented. Here we present a general-purpose, wide-range CDC that combines a correlated double sampling (CDS) approach with a differential asynchronous SAR ADC. Since the sensor capacitor is sampled only twice per conversion, energy per conversion is low. Furthermore, since the CDS separates the sensor capacitor from the CDAC, a full differential input voltage range is preserved. The CDC has a 2.5-to-75.5pF conversion range. Monotonic SAR ADC was designed in 180nm CMOS with 1-V power supply and a 1-kS/s sampling rate with switching energy of about 100nW

    High speed – energy efficient successive approximation analog to digital converter using tri-level switching

    Get PDF
    This thesis reports issues and design methods used to achieve high-speed and high-resolution Successive Approximation Register analog to digital converters (SAR ADCs). A major drawback of this technique relates to the mismatch in the binary ratios of capacitors which causes nonlinearity. Another issue is the use of large capacitors due to nonlinear effect of parasitic capacitance. Nonlinear effect of capacitor mismatch is investigated in this thesis. Based on the analysis, a new Tri-level switching algorithm is proposed to reduce the matching requirement for capacitors in SAR ADCs. The integral non-linearity (INL) and the differential non-linearity (DNL) of the proposed scheme are reduced by factor of two over conventional SAR ADC, which is the lowest compared to the previously reported schemes. In addition, the switching energy of the proposed scheme is reduced by 98.02% compared with the conventional SAR architecture. A new correction method to solve metastability error of comparator based on a novel design approach is proposed which reduces the required settling time about 1.1τ for each conversion cycle. Based on the above proposed methods two SAR ADCs: an 8-bit SAR ADC with 50MS/sec sampling rate, and a 10-bit SAR split ADC with 70 MS/sec sampling rate have been designed in 0.18μm Silterra complementary metal oxide semiconductor (CMOS) technology process which works at 1.2V supply voltage and input voltage of 2.4Vp-p. The 8-bit ADC digitizes 25MHz input signal with 48.16dB signal to noise and distortion ratio (SNDR) and 52.41dB spurious free dynamic range (SFDR) while consuming about 589μW. The figure of merit (FOM) of this ADC is 56.65 fJ/conv-step. The post layout of the 10-bit ADC with 1MHz input frequency produces SNDR, SFDR and effective number of bits (ENOB) of 57.1dB, 64.05dB and 9.17Bit, respectively, while its DNL and INL are -0.9/+2.8 least significant bit (LSB) and -2.5/+2.7 LSB, respectively. The total power consumption, including digital, analog and reference power, is 1.6mW. The FOM is 71.75fJ/conv. step

    DIGITALLY ASSISTED TECHNIQUES FOR NYQUIST RATE ANALOG-to-DIGITAL CONVERTERS

    Get PDF
    With the advance of technology and rapid growth of digital systems, low power high speed analog-to-digital converters with great accuracy are in demand. To achieve high effective number of bits Analog-to-Digital Converter(ADC) calibration as a time consuming process is a potential bottleneck for designs. This dissertation presentsa fully digital background calibration algorithm for a 7-bit redundant flash ADC using split structure and look-up table based correction. Redundant comparators are used in the flash ADC design of this work in order to tolerate large offset voltages while minimizing signal input capacitance. The split ADC structure helps by eliminating the unknown input signal from the calibration path. The flash ADC has been designed in 180nm IBM CMOS technology and fabricated through MOSIS. This work was supported by Analog Devices, Wilmington,MA. While much research on ADC design has concentrated on increasing resolution and sample rate, there are many applications (e.g. biomedical devices and sensor networks) that do not require high performance but do require low power energy efficient ADCs. This dissertation also explores on design of a low quiescent current 100kSps Successive Approximation (SAR) ADC that has been used as an error detection ADC for an automotive application in 350nm CD (CMOS-DMOS) technology. This work was supported by ON Semiconductor Corp, East Greenwich,RI

    Design of Energy-Efficient A/D Converters with Partial Embedded Equalization for High-Speed Wireline Receiver Applications

    Get PDF
    As the data rates of wireline communication links increases, channel impairments such as skin effect, dielectric loss, fiber dispersion, reflections and cross-talk become more pronounced. This warrants more interest in analog-to-digital converter (ADC)-based serial link receivers, as they allow for more complex and flexible back-end digital signal processing (DSP) relative to binary or mixed-signal receivers. Utilizing this back-end DSP allows for complex digital equalization and more bandwidth-efficient modulation schemes, while also displaying reduced process/voltage/temperature (PVT) sensitivity. Furthermore, these architectures offer straightforward design translation and can directly leverage the area and power scaling offered by new CMOS technology nodes. However, the power consumption of the ADC front-end and subsequent digital signal processing is a major issue. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-effcient receiver. This dissertation presents efficient implementations for multi-GS/s time-interleaved ADCs with partial embedded equalization. First prototype details a 6b 1.6GS/s ADC with a novel embedded redundant-cycle 1-tap DFE structure in 90nm CMOS. The other two prototypes explain more complex 6b 10GS/s ADCs with efficiently embedded feed-forward equalization (FFE) and decision feedback equalization (DFE) in 65nm CMOS. Leveraging a time-interleaved successive approximation ADC architecture, new structures for embedded DFE and FFE are proposed with low power/area overhead. Measurement results over FR4 channels verify the effectiveness of proposed embedded equalization schemes. The comparison of fabricated prototypes against state-of-the-art general-purpose ADCs at similar speed/resolution range shows comparable performances, while the proposed architectures include embedded equalization as well

    Ageing and embedded instrument monitoring of analogue/mixed-signal IPS

    Get PDF

    Parallel-sampling ADC architecture for power-efficient broadband multi-carrier systems

    Get PDF
    corecore