22,103 research outputs found

    Active C4 electrodes for local field potential recording applications

    Get PDF
    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μV rms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented.R01 NS072385 - NINDS NIH HHS; 1R01 NS072385 - NINDS NIH HH

    High resolution imaging with Fresnel interferometric arrays: suitability for exoplanet detection

    Full text link
    We propose a new kind of interferometric array that yields images of high dynamic range and large field. The numerous individual apertures in this array form a pattern related to a Fresnel zone plate. This array can be used for astrophysical imaging over a broad spectral bandwidth spanning from the U.V. (50 nanometers) to the I.R. (20 microns). Due to the long focal lengths involved, this instrument requires formation-flying of two space borne vessels. We present the concept and study the S/N ratio in different situations, then apply these results to probe the suitability of this concept to detect exoplanets.Comment: 12 pages, 19 figures, to be published in A&

    Microslit Nod-shuffle Spectroscopy - a technique for achieving very high densities of spectra

    Get PDF
    We describe a new approach to obtaining very high surface densities of optical spectra in astronomical observations with extremely accurate subtraction of night sky emission. The observing technique requires that the telescope is nodded rapidly between targets and adjacent sky positions; object and sky spectra are recorded on adjacent regions of a low-noise CCD through charge shuffling. This permits the use of extremely high densities of small slit apertures (`microslits') since an extended slit is not required for sky interpolation. The overall multi-object advantage of this technique is as large as 2.9x that of conventional multi-slit observing for an instrument configuration which has an underfilled CCD detector and is always >1.5 for high target densities. The `nod-shuffle' technique has been practically implemented at the Anglo-Australian Telescope as the `LDSS++ project' and achieves sky-subtraction accuracies as good as 0.04%, with even better performance possible. This is a factor of ten better than is routinely achieved with long-slits. LDSS++ has been used in various observational modes, which we describe, and for a wide variety of astronomical projects. The nod-shuffle approach should be of great benefit to most spectroscopic (e.g. long-slit, fiber, integral field) methods and would allow much deeper spectroscopy on very large telescopes (10m or greater) than is currently possible. Finally we discuss the prospects of using nod-shuffle to pursue extremely long spectroscopic exposures (many days) and of mimicking nod-shuffle observations with infrared arrays.Comment: Accepted for publication in PASP; 25 pages, 12 figures. A higher-quality compressed Postscript file (2.2Mb) is available from http://www.pha.jhu.edu/~kgb/papers/nodshuffle2000hq.ps.g

    First images on the sky from a hyper telescope

    Get PDF
    We show star images obtained with a miniature ``densified pupil imaging interferometer'' also called a hyper-telescope. The formation of such images violates a ``golden rule of imaging interferometers'' which appeared to forbid the use of interferometric arrangements differing from a Fizeau interferometer. These produce useless images when the sub-apertures spacing is much wider than their size, owing to diffraction through the sub-apertures. The hyper-telescope arrangement solves these problems opening the way towards multi-kilometer imaging arrays in space. We experimentally obtain an intensity gain of 24 +- 3X when a densified-pupil interferometer is compared to an equivalent Fizeau-type interferometer and show images of the double star alpha Gem. The initial results presented confirm the possibility of directly obtaining high resolution and high dynamic range images in the recombined focal plane of a large interferometer if enough elements are used.Comment: 6 pages, LaTeX, standard A&A macros + BibTeX macros. Accepted for publication in Astronomy and Astrophysics Supplement

    Class of near-perfect coded apertures

    Get PDF
    Coded aperture imaging of gamma ray sources has long promised an improvement in the sensitivity of various detector systems. The promise has remained largely unfulfilled, however, for either one of two reasons. First, the encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. Second, if the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. It is proposed to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method

    The Precision Array for Probing the Epoch of Reionization: 8 Station Results

    Full text link
    We are developing the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21cm emission from the early Universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a 4-antenna array in the low-RFI environment of Western Australia and an 8-antenna array at our prototyping site in Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (Câ„“C_\ell) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the cosmic variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at â„“=100\ell=100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the level of the fluctuations in 21cm emission associated with reionization.Comment: 13 pages, 14 figures, submitted to AJ. Revision 2 corrects a scaling error in the x axis of Fig. 12 that lowers the calculated power spectrum temperatur

    Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry

    Full text link
    We have designed, constructed, and tested an InGaAs near-infrared camera to explore whether low-cost detectors can make small (<1 m) telescopes capable of precise (<1 mmag) infrared photometry of relatively bright targets. The camera is constructed around the 640x512 pixel APS640C sensor built by FLIR Electro-Optical Components. We designed custom analog-to-digital electronics for maximum stability and minimum noise. The InGaAs dark current halves with every 7 deg C of cooling, and we reduce it to 840 e-/s/pixel (with a pixel-to-pixel variation of +/-200 e-/s/pixel) by cooling the array to -20 deg C. Beyond this point, glow from the readout dominates. The single-sample read noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory testing with a star field generated by a lenslet array shows that 2-star differential photometry is possible to a precision of 631 +/-205 ppm (0.68 mmag) hr^-0.5 at a flux of 2.4E4 e-/s. Employing three comparison stars and de-correlating reference signals further improves the precision to 483 +/-161 ppm (0.52 mmag) hr^-0.5. Photometric observations of HD80606 and HD80607 (J=7.7 and 7.8) in the Y band shows that differential photometry to a precision of 415 ppm (0.45 mmag) hr^-0.5 is achieved with an effective telescope aperture of 0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited photometry of brighter dwarfs with particular advantage for late-M and L types. In addition, one might acquire near-infrared photometry simultaneously with optical photometry or radial velocity measurements to maximize the return of exoplanet searches with small telescopes.Comment: Accepted to PAS
    • …
    corecore