3,280 research outputs found

    Scalable Video Coding Guidelines and Performance Evaluations for Adaptive Media Delivery of High Definition Content

    Get PDF
    International audienceScalability within media coding allows for content adaptation towards heterogeneous user contexts and enables in-network adaptation. However, there is no straightforward solution how to encode the content in a scalable way while maximizing rate-distortion performance. In this paper we provide encoding guidelines for scalable video coding based on a survey of media streaming industry solutions and a comprehensive performance evaluation using four state of the art scalable video codecs with a focus on high-definition content (1080p)

    Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding

    Full text link
    The next generation of multimedia applications will require the telecommunication networks to support a higher bitrate than today, in order to deliver virtual reality and ultra-high quality video content to the users. Most of the video content will be accessed from mobile devices, prompting the provision of very high data rates by next generation (5G) cellular networks. A possible enabler in this regard is communication at mmWave frequencies, given the vast amount of available spectrum that can be allocated to mobile users; however, the harsh propagation environment at such high frequencies makes it hard to provide a reliable service. This paper presents a reliable video streaming architecture for mmWave networks, based on multi connectivity and network coding, and evaluates its performance using a novel combination of the ns-3 mmWave module, real video traces and the network coding library Kodo. The results show that it is indeed possible to reliably stream video over cellular mmWave links, while the combination of multi connectivity and network coding can support high video quality with low latency.Comment: To be presented at the 2018 IEEE International Conference on Computing, Networking and Communications (ICNC), March 2018, Maui, Hawaii, USA (invited paper). 6 pages, 4 figure

    Recent Advances in Region-of-interest Video Coding

    Get PDF

    Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions

    Get PDF
    PhDThe research presented in this thesis aims to extend the scalability range of the wavelet-based video coding systems in order to achieve fully scalable coding with a wide range of available decoding points. Since the temporal redundancy regularly comprises the main portion of the global video sequence redundancy, the techniques that can be generally termed motion decorrelation techniques have a central role in the overall compression performance. For this reason the scalable motion modelling and coding are of utmost importance, and specifically, in this thesis possible solutions are identified and analysed. The main contributions of the presented research are grouped into two interrelated and complementary topics. Firstly a flexible motion model with rateoptimised estimation technique is introduced. The proposed motion model is based on tree structures and allows high adaptability needed for layered motion coding. The flexible structure for motion compensation allows for optimisation at different stages of the adaptive spatio-temporal decomposition, which is crucial for scalable coding that targets decoding on different resolutions. By utilising an adaptive choice of wavelet filterbank, the model enables high compression based on efficient mode selection. Secondly, solutions for scalable motion modelling and coding are developed. These solutions are based on precision limiting of motion vectors and creation of a layered motion structure that describes hierarchically coded motion. The solution based on precision limiting relies on layered bit-plane coding of motion vector values. The second solution builds on recently established techniques that impose scalability on a motion structure. The new approach is based on two major improvements: the evaluation of distortion in temporal Subbands and motion search in temporal subbands that finds the optimal motion vectors for layered motion structure. Exhaustive tests on the rate-distortion performance in demanding scalable video coding scenarios show benefits of application of both developed flexible motion model and various solutions for scalable motion coding

    Recent Advances in Watermarking for Scalable Video Coding

    Get PDF

    Transparent encryption with scalable video communication: Lower-latency, CABAC-based schemes

    Get PDF
    Selective encryption masks all of the content without completely hiding it, as full encryption would do at a cost in encryption delay and increased bandwidth. Many commercial applications of video encryption do not even require selective encryption, because greater utility can be gained from transparent encryption, i.e. allowing prospective viewers to glimpse a reduced quality version of the content as a taster. Our lightweight selective encryption scheme when applied to scalable video coding is well suited to transparent encryption. The paper illustrates the gains in reducing delay and increased distortion arising from a transparent encryption that leaves reduced quality base layer in the clear. Reduced encryption of B-frames is a further step beyond transparent encryption in which the computational overhead reduction is traded against content security and limited distortion. This spectrum of video encryption possibilities is analyzed in this paper, though all of the schemes maintain decoder compatibility and add no bitrate overhead as a result of jointly encoding and encrypting the input video by virtue of carefully selecting the entropy coding parameters that are encrypted. The schemes are suitable both for H.264 and HEVC codecs, though demonstrated in the paper for H.264. Selected Content Adaptive Binary Arithmetic Coding (CABAC) parameters are encrypted by a lightweight Exclusive OR technique, which is chosen for practicality
    corecore