93 research outputs found

    Collaborative Filtering in Social Tagging Systems Based on Joint Item-Tag Recommendations

    Get PDF
    Tapping into the wisdom of the crowd, social tagging can be considered an alternative mechanism - as opposed to Web search - for organizing and discovering information on the Web. Effective tag-based recommendation of information items, such as Web resources, is a critical aspect of this social information discovery mechanism. A precise understanding of the information structure of social tagging systems lies at the core of an effective tag-based recommendation method. While most of the existing research either implicitly or explicitly assumes a simple tripartite graph structure for this purpose, we propose a comprehensive information structure to capture all types of co-occurrence information in the tagging data. Based on the proposed information structure, we further propose a unified user profiling scheme to make full use of all available information. Finally, supported by our proposed user profile, we propose a novel framework for collaborative filtering in social tagging systems. In our proposed framework, we first generate joint item-tag recommendations, with tags indicating topical interests of users in target items. These joint recommendations are then refined by the wisdom from the crowd and projected to the item space for final item recommendations. Evaluation using three real-world datasets shows that our proposed recommendation approach significantly outperformed state-of-the-art approaches

    Multi-resolution Tensor Learning for Large-Scale Spatial Data

    Get PDF
    High-dimensional tensor models are notoriously computationally expensive to train. We present a meta-learning algorithm, MMT, that can significantly speed up the process for spatial tensor models. MMT leverages the property that spatial data can be viewed at multiple resolutions, which are related by coarsening and finegraining from one resolution to another. Using this property, MMT learns a tensor model by starting from a coarse resolution and iteratively increasing the model complexity. In order to not "over-train" on coarse resolution models, we investigate an information-theoretic fine-graining criterion to decide when to transition into higher-resolution models. We provide both theoretical and empirical evidence for the advantages of this approach. When applied to two real-world large-scale spatial datasets for basketball player and animal behavior modeling, our approach demonstrate 3 key benefits: 1) it efficiently captures higher-order interactions (i.e., tensor latent factors), 2) it is orders of magnitude faster than fixed resolution learning and scales to very fine-grained spatial resolutions, and 3) it reliably yields accurate and interpretable models

    Graph Neural Networks Boosted Personalized Tag Recommendation Algorithm

    Get PDF
    Personalized tag recommender systems recommend a set of tags for items based on users’ historical behaviors, and play an important role in the collaborative tagging systems. However, traditional personalized tag recommendation methods cannot guarantee that the collaborative signal hidden in the interactions among entities is effectively encoded in the process of learning the representations of entities, resulting in insufficient expressive capacity for characterizing the preferences or attributes of entities. In this paper, we proposed a graph neural networks boosted personalized tag recommendation model, which integrates the graph neural networks into the pairwise interaction tensor factorization model. Specifically, we consider two types of interaction graph (i.e. the user-tag interaction graph and the item-tag interaction graph) that is derived from the tag assignments. For each interaction graph, we exploit the graph neural networks to capture the collaborative signal that is encoded in the interaction graph and integrate the collaborative signal into the learning of representations of entities by transmitting and assembling the representations of entity neighbors along the interaction graphs. In this way, we explicitly capture the collaborative signal, resulting in rich and meaningful representations of entities. Experimental results on real world datasets show that our proposed graph neural networks boosted personalized tag recommendation model outperforms the traditional tag recommendation models

    Structural Deep Embedding for Hyper-Networks

    Full text link
    Network embedding has recently attracted lots of attentions in data mining. Existing network embedding methods mainly focus on networks with pairwise relationships. In real world, however, the relationships among data points could go beyond pairwise, i.e., three or more objects are involved in each relationship represented by a hyperedge, thus forming hyper-networks. These hyper-networks pose great challenges to existing network embedding methods when the hyperedges are indecomposable, that is to say, any subset of nodes in a hyperedge cannot form another hyperedge. These indecomposable hyperedges are especially common in heterogeneous networks. In this paper, we propose a novel Deep Hyper-Network Embedding (DHNE) model to embed hyper-networks with indecomposable hyperedges. More specifically, we theoretically prove that any linear similarity metric in embedding space commonly used in existing methods cannot maintain the indecomposibility property in hyper-networks, and thus propose a new deep model to realize a non-linear tuplewise similarity function while preserving both local and global proximities in the formed embedding space. We conduct extensive experiments on four different types of hyper-networks, including a GPS network, an online social network, a drug network and a semantic network. The empirical results demonstrate that our method can significantly and consistently outperform the state-of-the-art algorithms.Comment: Accepted by AAAI 1
    • …
    corecore