64 research outputs found

    Accurate gradient computations at interfaces using finite element methods

    Full text link
    New finite element methods are proposed for elliptic interface problems in one and two dimensions. The main motivation is not only to get an accurate solution but also an accurate first order derivative at the interface (from each side). The key in 1D is to use the idea from \cite{wheeler1974galerkin}. For 2D interface problems, the idea is to introduce a small tube near the interface and introduce the gradient as part of unknowns, which is similar to a mixed finite element method, except only at the interface. Thus the computational cost is just slightly higher than the standard finite element method. We present rigorous one dimensional analysis, which show second order convergence order for both of the solution and the gradient in 1D. For two dimensional problems, we present numerical results and observe second order convergence for the solution, and super-convergence for the gradient at the interface

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    A first order system least squares method for the Helmholtz equation

    Full text link
    We present a first order system least squares (FOSLS) method for the Helmholtz equation at high wave number k, which always deduces Hermitian positive definite algebraic system. By utilizing a non-trivial solution decomposition to the dual FOSLS problem which is quite different from that of standard finite element method, we give error analysis to the hp-version of the FOSLS method where the dependence on the mesh size h, the approximation order p, and the wave number k is given explicitly. In particular, under some assumption of the boundary of the domain, the L2 norm error estimate of the scalar solution from the FOSLS method is shown to be quasi optimal under the condition that kh/p is sufficiently small and the polynomial degree p is at least O(\log k). Numerical experiments are given to verify the theoretical results

    Mini-Workshop: Efficient and Robust Approximation of the Helmholtz Equation

    Get PDF
    The accurate and efficient treatment of wave propogation phenomena is still a challenging problem. A prototypical equation is the Helmholtz equation at high wavenumbers. For this equation, Babuška & Sauter showed in 2000 in their seminal SIAM Review paper that standard discretizations must fail in the sense that the ratio of true error and best approximation error has to grow with the frequency. This has spurred the development of alternative, non-standard discretization techniques. This workshop focused on evaluating and comparing these different approaches also with a view to their applicability to more general wave propagation problems

    Computational Engineering

    Get PDF
    This Workshop treated a variety of finite element methods and applications in computational engineering and expanded their mathematical foundation in engineering analysis. Among the 53 participants were mathematicians and engineers with focus on mixed and nonstandard finite element schemes and their applications

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Small Collaboration: Numerical Analysis of Electromagnetic Problems (hybrid meeting)

    Get PDF
    The classical theory of electromagnetism describes the interaction of electrically charged particles through electromagnetic forces, which are carried by the electric and magnetic fields. The propagation of the electromagnetic fields can be described by Maxwell's equations. Solving Maxwell's equations numerically is a challenging problem which appears in many different technical applications. Difficulties arise for instance from material interfaces or if the geometrical features are much larger than or much smaller than a typical wavelength. The spatial discretization needs to combine good geometrical flexibility with a relatively high order of accuracy. The aim of this small-scale, week-long interactive mini-workshop jointly organized by the University of Duisburg-Essen and the University of Twente, and kindly hosted at the MFO, is to bring together experts in non-standard and mixed finite elements methods with experts in the field of electromagnetism

    Breaking spaces and forms for the DPG method and applications including Maxwell equations

    Get PDF
    Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken' test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultraweak form, and a spectrum of forms in between
    corecore