616 research outputs found

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Image compression techniques using vector quantization

    Get PDF

    Strea MRAK a streaming multi-resolution adaptive kernel algorithm

    Get PDF
    Kernel ridge regression (KRR) is a popular scheme for non-linear non-parametric learning. However, existing implementations of KRR require that all the data is stored in the main memory, which severely limits the use of KRR in contexts where data size far exceeds the memory size. Such applications are increasingly common in data mining, bioinformatics, and control. A powerful paradigm for computing on data sets that are too large for memory is the streaming model of computation, where we process one data sample at a time, discarding each sample before moving on to the next one. In this paper, we propose StreaMRAK - a streaming version of KRR. StreaMRAK improves on existing KRR schemes by dividing the problem into several levels of resolution, which allows continual refinement to the predictions. The algorithm reduces the memory requirement by continuously and efficiently integrating new samples into the training model. With a novel sub-sampling scheme, StreaMRAK reduces memory and computational complexities by creating a sketch of the original data, where the sub-sampling density is adapted to the bandwidth of the kernel and the local dimensionality of the data. We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum. The results show that the proposed algorithm is fast and accurate

    Content-prioritised video coding for British Sign Language communication.

    Get PDF
    Video communication of British Sign Language (BSL) is important for remote interpersonal communication and for the equal provision of services for deaf people. However, the use of video telephony and video conferencing applications for BSL communication is limited by inadequate video quality. BSL is a highly structured, linguistically complete, natural language system that expresses vocabulary and grammar visually and spatially using a complex combination of facial expressions (such as eyebrow movements, eye blinks and mouth/lip shapes), hand gestures, body movements and finger-spelling that change in space and time. Accurate natural BSL communication places specific demands on visual media applications which must compress video image data for efficient transmission. Current video compression schemes apply methods to reduce statistical redundancy and perceptual irrelevance in video image data based on a general model of Human Visual System (HVS) sensitivities. This thesis presents novel video image coding methods developed to achieve the conflicting requirements for high image quality and efficient coding. Novel methods of prioritising visually important video image content for optimised video coding are developed to exploit the HVS spatial and temporal response mechanisms of BSL users (determined by Eye Movement Tracking) and the characteristics of BSL video image content. The methods implement an accurate model of HVS foveation, applied in the spatial and temporal domains, at the pre-processing stage of a current standard-based system (H.264). Comparison of the performance of the developed and standard coding systems, using methods of video quality evaluation developed for this thesis, demonstrates improved perceived quality at low bit rates. BSL users, broadcasters and service providers benefit from the perception of high quality video over a range of available transmission bandwidths. The research community benefits from a new approach to video coding optimisation and better understanding of the communication needs of deaf people

    Extracting and Analysing of Heterogeneous Features for Robust FRS

    Full text link
    Collecting, cleaning, combining and analysing of data are in demand in all the fields for acquiring accuracy in their task. In biometrics, this process is done for smart and secured life by means of extracting and analysing data for recognition task. Huge volume and variety of data are effectively extracted and analysed with Matlab2015 to identify the uniqueness of attributes for better accuracy in recognition process. Heterogeneous set of features that are extracted from ORL face dataset are analysed with Nearest Neighbour Rule in order to identify the unique facial features for robust FRS (Face Recognition System)

    Progressive transmission of pseudo-color images. Appendix 1: Item 4

    Get PDF
    The transmission of digital images can require considerable channel bandwidth. The cost of obtaining such a channel can be prohibitive, or the channel might simply not be available. In this case, progressive transmission (PT) can be useful. PT presents the user with a coarse initial image approximation, and then proceeds to refine it. In this way, the user tends to receive information about the content of the image sooner than if a sequential transmission method is used. PT finds application in image data base browsing, teleconferencing, medical and other applications. A PT scheme is developed for use with a particular type of image data, the pseudo-color or color mapped image. Such images consist of a table of colors called a colormap, plus a 2-D array of index values which indicate which colormap entry is to be used to display a given pixel. This type of image presents some unique problems for a PT coder, and techniques for overcoming these problems are developed. A computer simulation of the color mapped PT scheme is developed to evaluate its performance. Results of simulation using several test images are presented

    Block-level discrete cosine transform coefficients for autonomic face recognition

    Get PDF
    This dissertation presents a novel method of autonomic face recognition based on the recently proposed biologically plausible network of networks (NoN) model of information processing. The NoN model is based on locally parallel and globally coordinated transformations. In the NoN architecture, the neurons or computational units form distributed networks, which themselves link to form larger networks. In the general case, an n-level hierarchy of nested distributed networks is constructed. This models the structures in the cerebral cortex described by Mountcastle and the architecture based on that proposed for information processing by Sutton. In the implementation proposed in the dissertation, the image is processed by a nested family of locally operating networks along with a hierarchically superior network that classifies the information from each of the local networks. The implementation of this approach helps obtain sensitivity to the contrast sensitivity function (CSF) in the middle of the spectrum, as is true for the human vision system. The input images are divided into blocks to define the local regions of processing. The two-dimensional Discrete Cosine Transform (DCT), a spatial frequency transform, is used to transform the data into the frequency domain. Thereafter, statistical operators that calculate various functions of spatial frequency in the block are used to produce a block-level DCT coefficient. The image is now transformed into a variable length vector that is trained with respect to the data set. The classification was done by the use of a backpropagation neural network. The proposed method yields excellent results on a benchmark database. The results of the experiments yielded a maximum of 98.5% recognition accuracy and an average of 97.4% recognition accuracy. An advanced version of the method where the local processing is done on offset blocks has also been developed. This has validated the NoN approach and further research using local processing as well as more advanced global operators is likely to yield even better results

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition
    corecore