1,046 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Mobile ad hoc networks in transportation data collection and dissemination

    Get PDF
    The field of transportation is rapidly changing with new opportunities for systems solutions and emerging technologies. The global economic impact of congestion and accidents are significant. Improved means are needed to solve them. Combined with the increasing numbers of vehicles on the road, the net economic impact is measured in the many billions of dollars. Promising methodologies explored in this thesis include the use of the Internet of Things (IoT) and Mobile Ad Hoc Networks (MANET). Interconnecting vehicles using Dedicated Short Range Communication technology (DSRC) brings many benefits. Integrating DSRC into roadway vehicles offers the promise of reducing the problems of congestion and accidents; however, it comes with risks such as loss of connectivity due to power outages as well as controlling and managing loading in such networks. Energy consumption of vehicle communication equipment is a crucial factor in high availability sensor networks. Sending critical emergency messaged through linked vehicles requires that there always be energy and communication reserves. Two algorithms are described. The first controls energy consumption to guarantee an energy reserve for sending alert signals. The second exploits Long Term Evolution (LTE) to guarantee a reliable communication path

    Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications

    Get PDF
    The Internet of Things (IoT) provides a virtual view, via the Internet Protocol, to a huge variety of real life objects, ranging from a car, to a teacup, to a building, to trees in a forest. Its appeal is the ubiquitous generalized access to the status and location of any "thing" we may be interested in. Wireless sensor networks (WSN) are well suited for long-term environmental data acquisition for IoT representation. This paper presents the functional design and implementation of a complete WSN platform that can be used for a range of long-term environmental monitoring IoT applications. The application requirements for low cost, high number of sensors, fast deployment, long lifetime, low maintenance, and high quality of service are considered in the specification and design of the platform and of all its components. Low-effort platform reuse is also considered starting from the specifications and at all design levels for a wide array of related monitoring application

    Restricting Barrier and Finding the Shortest Path in Wireless Sensor Network Using Mobile Sink

    Get PDF
    Wireless Sensor Network (WSN) is a collection of spatially deployed in wireless sensors. In general, sensing field could contain various barriers which cause loss of information transferring towards the destination. As a remedy, this proposed work presents an energy-efficient routing mechanism based on cluster in mobile sink. The scope of this work is to provide a mobile sink in a single mobile node which begins data-gathering from starting stage, then immediately collects facts from cluster heads in single-hop range and subsequently, it returns to the starting stage. During the movement of the mobile sink if the barrier exists in the sensing field it can be detected using Spanning graph and Grid based techniques. The possible locations for the mobile sink movement can be reduced easily by Spanning graph. At last, Barrier avoidance-shortest route was established for mobile sink using Dijkstra algorithm. The Distributed location information is collected using a Timer Bloom Filter Aggregation (TBFA) scheme. In the TBFA scheme, the location information of Mobile node (MNs) is maintained by Bloom filters by each Mobile agent (MA). Since the propagation of the whole Bloom filter for every Mobile node (MN) movement leads to high signaling overhead, each Mobile agent (MA) only propagates changed indexes in the Bloom filter when a pre-defined timer expires. To verify the performance of the TBFA scheme, an analytical model is developed on the signaling overhead and the latency and devise an algorithm to select an appropriate timer value. Extensive simulation and Network Simulator 2(NS2) results are given to show the accuracy of analytical models and effectiveness of the proposed method

    Sustainable Forest Management Techniques

    Get PDF

    Sencar Based Load Balanced Clustering With Mobile Data Gathering In Wireless Sensor Networks

    Get PDF
    The wireless sensor networks consist of static sensors, which can be deployed in a wide environment for monitoring applications. While transmitting the data from source to static sink, the amount of energy consumption of the sensor node is high. This results in reduced lifetime of the network. Some of the WSN architectures have been proposed based on Mobile Elements such as three-layer framework is for mobile data collection, which includes the sensor layer, cluster head layer, and mobile collector layer (called SenCar layer). This framework employs distributed load balanced clustering and dual data uploading, it is referred to as LBC-DDU.In the sensor layer a distributed load balanced clustering algorithm is used for sensors to self-organize themselves into clusters. The cluster head layer use inter-cluster transmission range it is carefully chosen to guarantee the connectivity among the clusters. Multiple cluster heads within a cluster cooperate with each other to perform energy-saving in the inter-cluster communications. Through this transmissions cluster head information is send to the SenCar for its moving trajectory planning.This is done by utilizing multi-user multiple-input and multiple-output (MU-MIMO) technique. Then the results show each cluster has at most two cluster heads. LBC-DDU achieves higher energy saving per node and energy saving on cluster heads comparing with data collection through multi-hop relay to the static data sinks
    corecore