714 research outputs found

    Event-based Simultaneous Localization and Mapping: A Comprehensive Survey

    Full text link
    In recent decades, visual simultaneous localization and mapping (vSLAM) has gained significant interest in both academia and industry. It estimates camera motion and reconstructs the environment concurrently using visual sensors on a moving robot. However, conventional cameras are limited by hardware, including motion blur and low dynamic range, which can negatively impact performance in challenging scenarios like high-speed motion and high dynamic range illumination. Recent studies have demonstrated that event cameras, a new type of bio-inspired visual sensor, offer advantages such as high temporal resolution, dynamic range, low power consumption, and low latency. This paper presents a timely and comprehensive review of event-based vSLAM algorithms that exploit the benefits of asynchronous and irregular event streams for localization and mapping tasks. The review covers the working principle of event cameras and various event representations for preprocessing event data. It also categorizes event-based vSLAM methods into four main categories: feature-based, direct, motion-compensation, and deep learning methods, with detailed discussions and practical guidance for each approach. Furthermore, the paper evaluates the state-of-the-art methods on various benchmarks, highlighting current challenges and future opportunities in this emerging research area. A public repository will be maintained to keep track of the rapid developments in this field at {\url{https://github.com/kun150kun/ESLAM-survey}}

    Asynchronous, Photometric Feature Tracking using Events and Frames

    Full text link
    We present a method that leverages the complementarity of event cameras and standard cameras to track visual features with low-latency. Event cameras are novel sensors that output pixel-level brightness changes, called "events". They offer significant advantages over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of microseconds. However, because the same scene pattern can produce different events depending on the motion direction, establishing event correspondences across time is challenging. By contrast, standard cameras provide intensity measurements (frames) that do not depend on motion direction. Our method extracts features on frames and subsequently tracks them asynchronously using events, thereby exploiting the best of both types of data: the frames provide a photometric representation that does not depend on motion direction and the events provide low-latency updates. In contrast to previous works, which are based on heuristics, this is the first principled method that uses raw intensity measurements directly, based on a generative event model within a maximum-likelihood framework. As a result, our method produces feature tracks that are both more accurate (subpixel accuracy) and longer than the state of the art, across a wide variety of scenes.Comment: 22 pages, 15 figures, Video: https://youtu.be/A7UfeUnG6c

    SLAM for Visually Impaired People: A Survey

    Full text link
    In recent decades, several assistive technologies for visually impaired and blind (VIB) people have been developed to improve their ability to navigate independently and safely. At the same time, simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient to be adopted in the development of assistive technologies. In this paper, we first report the results of an anonymous survey conducted with VIB people to understand their experience and needs; we focus on digital assistive technologies that help them with indoor and outdoor navigation. Then, we present a literature review of assistive technologies based on SLAM. We discuss proposed approaches and indicate their pros and cons. We conclude by presenting future opportunities and challenges in this domain.Comment: 26 pages, 5 tables, 3 figure

    Enriching remote labs with computer vision and drones

    Get PDF
    165 p.With the technological advance, new learning technologies are being developed in order to contribute to better learning experience. In particular, remote labs constitute an interesting and a practical way that can motivate nowadays students to learn. The studen can at anytime, and from anywhere, access the remote lab and do his lab-work. Despite many advantages, remote tecnologies in education create a distance between the student and the teacher. Without the presence of a teacher, students can have difficulties, if no appropriate interventions can be taken to help them. In this thesis, we aim to enrich an existing remote electronic lab made for engineering students called "LaboREM" (for remote Laboratory) in two ways: first we enable the student to send high level commands to a mini-drone available in the remote lab facility. The objective is to examine the front panels of electronic measurement instruments, by the camera embedded on the drone. Furthermore, we allow remote student-teacher communication using the drone, in case there is a teacher present in the remote lab facility. Finally, the drone has to go back home when the mission is over to land on a platform for automatic recharge of the batteries. Second, we propose an automatic system that estimates the affective state of the student (frustrated/confused/flow) in order to take appropriate interventions to ensure good learning outcomes. For example, if the studen is having major difficulties we can try to give him hints or to reduce the difficulty level of the lab experiment. We propose to do this by using visual cues (head pose estimation and facil expression analysis). Many evidences on the state of the student can be acquired, however these evidences are incomplete, sometims inaccurate, and do not cover all the aspects of the state of the student alone. This is why we propose to fuse evidences using the theory of Dempster-Shafer that allows the fusion of incomplete evidence

    Visual Place Recognition for Autonomous Robots

    Get PDF
    Autonomous robotics has been the subject of great interest within the research community over the past few decades. Its applications are wide-spread, ranging from health-care to manufacturing, goods transportation to home deliveries, site-maintenance to construction, planetary explorations to rescue operations and many others, including but not limited to agriculture, defence, commerce, leisure and extreme environments. At the core of robot autonomy lies the problem of localisation, i.e, knowing where it is and within the robotics community, this problem is termed as place recognition. Place recognition using only visual input is termed as Visual Place Recognition (VPR) and refers to the ability of an autonomous system to recall a previously visited place using only visual input, under changing viewpoint, illumination and seasonal conditions, and given computational and storage constraints. This thesis is a collection of 4 inter-linked, mutually-relevant but branching-out topics within VPR: 1) What makes a place/image worthy for VPR?, 2) How to define a state-of-the-art in VPR?, 3) Do VPR techniques designed for ground-based platforms extend to aerial platforms? and 4) Can a handcrafted VPR technique outperform deep-learning-based VPR techniques? Each of these questions is a dedicated, peer-reviewed chapter in this thesis and the author attempts to answer these questions to the best of his abilities. The worthiness of a place essentially refers to the salience and distinctiveness of the content in the image of this place. This salience is modelled as a framework, namely memorable-maps, comprising of 3 conjoint criteria: a) Human-memorability of an image, 2) Staticity and 3) Information content. Because a large number of VPR techniques have been proposed over the past 10-15 years, and due to the variation of employed VPR datasets and metrics for evaluation, the correct state-of-the-art remains ambiguous. The author levels this playing field by deploying 10 contemporary techniques on a common platform and use the most challenging VPR datasets to provide a holistic performance comparison. This platform is then extended to aerial place recognition datasets to answer the 3rd question above. Finally, the author designs a novel, handcrafted, compute-efficient and training-free VPR technique that outperforms state-of-the-art VPR techniques on 5 different VPR datasets
    corecore