1,060 research outputs found

    Low-frequency oscillations employ a general coding of the spatio-temporal similarity of dynamic faces

    Get PDF
    Brain networks use neural oscillations as information transfer mechanisms. Although the face perception network in occipitotemporal cortex is well-studied, contributions of oscillations to face representation remain an open question. We tested for links between oscillatory responses that encode facial dimensions and the theoretical proposal that faces are encoded in similarity-based “face spaces”. We quantified similarity-based encoding of dynamic faces in magnetoencephalographic sensor-level oscillatory power for identity, expression, physical and perceptual similarity of facial form and motion. Our data show that evoked responses manifest physical and perceptual form similarity that distinguishes facial identities. Low-frequency induced oscillations (< 20 Hz) manifested more general similarity structure, which was not limited to identity, and spanned physical and perceived form and motion. A supplementary fMRI-constrained source reconstruction implicated fusiform gyrus and V5 in this similarity-based representation. These findings introduce a potential link between “face space” encoding and oscillatory network communication, which generates new hypotheses about the potential oscillation-mediated mechanisms that might encode facial dimensions

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    EEG Based Inference of Spatio-Temporal Brain Dynamics

    Get PDF

    Varieties of Attractiveness and their Brain Responses

    Get PDF

    Science of Facial Attractiveness

    Get PDF
    • …
    corecore