377 research outputs found

    Development platform for elderly-oriented tabletop games

    Get PDF
    Tese de mestrado integrado. Engenharia Informåtica e Computação. Universidade do Porto. Faculdade de Engenharia. 201

    Exploration space of human-data interaction

    Get PDF
    Data is everywhere. Starting with the invention of writing, representation artifacts brought the data to observable state which led to natural establishment of an interaction form between human and data. In the human-data interaction (HDI) environment, data representations and analytic systems act as an intermediary role. I suggest a new de nition for HDI in which this interaction is conceptualized as a communication model over a set of media. The interaction occurs with the exchange of messages originated from both human and data. Timing and content of the messages are employed to facilitate objective evaluation of properties of analytic system in question. To systematically investigate the complex nature of HDI, my methodology postulates the phenomenon as a high-dimensional space in which data analytic systems could be positioned based on their properties. Evaluation of the properties are performed based on solid de nitions of the dimensions. I de ne ve properties for data analytic systems, namely, responsiveness, communication media level, unit task diversity, closeness factor, and progressiveness level, and demonstrate how these properties could be objectively calculated. I visually explore the HDI space in which data analytic systems reported in my thesis are plotted on a two-dimensional Cartesian system whose axes are responsiveness and communication media level. Visually identi able patterns in this plot, which I call realms, are characterized by quantitative and qualitative analysis of objective, behavioral, and subjective data collected during the user interaction with the corresponding analytic system

    Designing for Shareable Interfaces in the Wild

    Get PDF
    Despite excitement about the potential of interactive tabletops to support collaborative work, there have been few empirical demonstrations of their effectiveness (Marshall et al., 2011). In particular, while lab-based studies have explored the effects of individual design features, there has been a dearth of studies evaluating the success of systems in the wild. For this technology to be of value, designers and systems builders require a better understanding of how to develop and evaluate tabletop applications to be deployed in real world settings. This dissertation reports on two systems designed through a process that incorporated ethnography-style observations, iterative design and in the wild evaluation. The first study focused on collaborative learning in a medical setting. To address the fact that visitors to a hospital emergency ward were leaving with an incomplete understanding of their diagnosis and treatment, a system was prototyped in a working Emergency Room (ER) with doctors and patients. The system was found to be helpful but adoption issues hampered its impact. The second study focused on a planning application for visitors to a tourist information centre. Issues and opportunities for a successful, contextually-fitted system were addressed and it was found to be effective in supporting group planning activities by novice users, in particular, facilitating users’ first experiences, providing effective signage and offering assistance to guide the user through the application. This dissertation contributes to understanding of multi-user systems through literature review of tabletop systems, collaborative tasks, design frameworks and evaluation of prototypes. Some support was found for the claim that tabletops are a useful technology for collaboration, and several issues were discussed. Contributions to understanding in this field are delivered through design guidelines, heuristics, frameworks, and recommendations, in addition to the two case studies to help guide future tabletop system creators

    User-defined multimodal interaction to enhance children's number learning

    Get PDF
    Children today are already exposed to the new technology and have experienced excellent number learning applications at an early age. Despite that, most of the children's application softwares either fail to establish the interaction design or are not child-friendly. Involving children in the design phase of any children application is therefore essential as adults or developers do not know the children’s needs and requirements. In other words, designing children's computer applications adapted to the capabilities of children is an important part of today's software development methodology. The goal of this research is to propose a new interaction technique and usability that evaluates children learning performance of numbers. The new interaction technique is designed by participatory design in which children are involved in the design process. A VisionMath interface was implemented with the user-defined multimodal interaction dialogues which was proposed to evaluate the children’s learning ability and subjective satisfaction. An evaluation with 20 participants was conducted using usability testing methods. The result shows that there is a significant difference in the number learning performance between tactile interaction and multimodal interaction. This study reveals the proposed user-defined multimodal interaction dialogue was successful in providing a new interaction technique for children’s number learning by offering alternative input modality and potentially providing a rich field of research in the future

    Designing to Support Workspace Awareness in Remote Collaboration using 2D Interactive Surfaces

    Get PDF
    Increasing distributions of the global workforce are leading to collaborative workamong remote coworkers. The emergence of such remote collaborations is essentiallysupported by technology advancements of screen-based devices ranging from tabletor laptop to large displays. However, these devices, especially personal and mobilecomputers, still suffer from certain limitations caused by their form factors, that hinder supporting workspace awareness through non-verbal communication suchas bodily gestures or gaze. This thesis thus aims to design novel interfaces andinteraction techniques to improve remote coworkers’ workspace awareness throughsuch non-verbal cues using 2D interactive surfaces.The thesis starts off by exploring how visual cues support workspace awareness infacilitated brainstorming of hybrid teams of co-located and remote coworkers. Basedon insights from this exploration, the thesis introduces three interfaces for mobiledevices that help users maintain and convey their workspace awareness with their coworkers. The first interface is a virtual environment that allows a remote person to effectively maintain his/her awareness of his/her co-located collaborators’ activities while interacting with the shared workspace. To help a person better express his/her hand gestures in remote collaboration using a mobile device, the second interfacepresents a lightweight add-on for capturing hand images on and above the device’sscreen; and overlaying them on collaborators’ device to improve their workspace awareness. The third interface strategically leverages the entire screen space of aconventional laptop to better convey a remote person’s gaze to his/her co-locatedcollaborators. Building on the top of these three interfaces, the thesis envisions an interface that supports a person using a mobile device to effectively collaborate with remote coworkers working with a large display.Together, these interfaces demonstrate the possibilities to innovate on commodity devices to offer richer non-verbal communication and better support workspace awareness in remote collaboration

    Exploring the potential of physical visualizations

    Get PDF
    The goal of an external representation of abstract data is to provide insights and convey information about the structure of the underlying data, therefore helping people execute tasks and solve problems more effectively. Apart from the popular and well-studied digital visualization of abstract data there are other scarcely studied perceptual channels to represent data such as taste, sound or haptic. My thesis focuses on the latter and explores in which ways human knowledge and ability to sense and interact with the physical non-digital world can be used to enhance the way in which people analyze and explore abstract data. Emerging technological progress in digital fabrication allow an easy, fast and inexpensive production of physical objects. Machines such as laser cutters and 3D printers enable an accurate fabrication of physical visualizations with different form factors as well as materials. This creates, for the first time, the opportunity to study the potential of physical visualizations in a broad range. The thesis starts with the description of six prototypes of physical visualizations from static examples to digitally augmented variations to interactive artifacts. Based on these explorations, three promising areas of potential for physical visualizations were identified and investigated in more detail: perception & memorability, communication & collaboration, and motivation & self-reflection. The results of two studies in the area of information recall showed that participants who used a physical bar chart retained more information compared to the digital counterpart. Particularly facts about maximum and minimum values were be remembered more efficiently, when they were perceived from a physical visualization. Two explorative studies dealt with the potential of physical visualizations regarding communication and collaboration. The observations revealed the importance on the design and aesthetic of physical visualizations and indicated a great potential for their utilization by audiences with less interest in technology. The results also exposed the current limitations of physical visualizations, especially in contrast to their well-researched digital counterparts. In the area of motivation we present the design and evaluation of the Activity Sculptures project. We conducted a field study, in which we investigated physical visualizations of personal running activity. It was discovered that these sculptures generated curiosity and experimentation regarding the personal running behavior as well as evoked social dynamics such as discussions and competition. Based on the findings of the aforementioned studies this thesis concludes with two theoretical contributions on the design and potential of physical visualizations. On the one hand, it proposes a conceptual framework for material representations of personal data by describing a production and consumption lens. The goal is to encourage artists and designers working in the field of personal informatics to harness the interactive capabilities afforded by digital fabrication and the potential of material representations. On the other hand we give a first classification and performance rating of physical variables including 14 dimensions grouped into four categories. This complements the undertaking of providing researchers and designers with guidance and inspiration to uncover alternative strategies for representing data physically and building effective physical visualizations.Um aus abstrakten Daten konkrete Aussagen, komplexe ZusammenhĂ€nge oder überraschende Einsichten gewinnen zu können, müssen diese oftmals in eine, für den Menschen, anschauliche Form gebracht werden. Eine weitverbreitete und gut erforschte Möglichkeiten ist die Darstellung von Daten in visueller Form. Weniger erforschte Varianten sind das Verkörpern von Daten durch GerĂ€usche, Gerüche oder physisch ertastbare Objekte und Formen. Diese Arbeit konzentriert sich auf die letztgenannte Variante und untersucht wie die menschlichen FĂ€higkeiten mit der physischenWelt zu interagieren dafür genutzt werden können, das Analysieren und Explorieren von Daten zu unterstützen. Der technische Fortschritt in der digitalen Fertigung vereinfacht und beschleunigt die Produktion von physischen Objekten und reduziert dabei deren Kosten. Lasercutter und 3D Drucker ermöglichen beispielsweise eine maßgerechte Fertigung physischer Visualisierungen verschiedenster AusprĂ€gungen hinsichtlich GrĂ¶ĂŸe und Material. Dadurch ergibt sich zum ersten Mal die Gelegenheit, das Potenzial von physischen Visualisierungen in grĂ¶ĂŸerem Umfang zu erforschen. Der erste Teil der Arbeit skizziert insgesamt sechs Prototypen physischer Visualisierungen, wobei sowohl statische Beispiele beschrieben werden, als auch Exemplare die durch digital Inhalte erweitert werden oder dynamisch auf Interaktionen reagieren können. Basierend auf den Untersuchungen dieser Prototypen wurden drei vielversprechende Bereiche für das Potenzial physischer Visualisierungen ermittelt und genauer untersucht: Wahrnehmung & EinprĂ€gsamkeit, Kommunikation & Zusammenarbeit sowie Motivation & Selbstreflexion. Die Ergebnisse zweier Studien zur Wahrnehmung und EinprĂ€gsamkeit von Informationen zeigten, dass sich Teilnehmer mit einem physischen Balkendiagramm an deutlich mehr Informationen erinnern konnten, als Teilnehmer, die eine digitale Visualisierung nutzten. Insbesondere Fakten über Maximal- und Minimalwerte konnten besser im GedĂ€chtnis behalten werden, wenn diese mit Hilfe einer physischen Visualisierung wahrgenommen wurden. Zwei explorative Studien untersuchten das Potenzial von physischen Visualisierungen im Bereich der Kommunikation mit Informationen sowie der Zusammenarbeit. Die Ergebnisse legten einerseits offen wie wichtig ein ausgereiftes Design und die Ästhetik von physischen Visualisierungen ist, deuteten anderseits aber auch darauf hin, dass Menschen mit geringem Interesse an neuen Technologien eine interessante Zielgruppe darstellen. Die Studien offenbarten allerdings auch die derzeitigen Grenzen von physischen Visualisierungen, insbesondere im Vergleich zu ihren gut erforschten digitalen Pendants. Im Bereich der Motivation und Selbstreflexion prĂ€sentieren wir die Entwicklung und Auswertung des Projekts Activity Sculptures. In einer Feldstudie über drei Wochen erforschten wir physische Visualisierungen, die persönliche Laufdaten reprĂ€sentieren. Unsere Beobachtungen und die Aussagen der Teilnehmer ließen darauf schließen, dass die Skulpturen Neugierde weckten und zum Experimentieren mit dem eigenen Laufverhalten einluden. Zudem konnten soziale Dynamiken entdeckt werden, die beispielsweise durch Diskussion aber auch Wettbewerbsgedanken zum Ausdruck kamen. Basierend auf den gewonnen Erkenntnissen durch die erwĂ€hnten Studien schließt diese Arbeit mit zwei theoretischen BeitrĂ€gen, hinsichtlich des Designs und des Potenzials von physischen Visualisierungen, ab. Zuerst wird ein konzeptionelles Framework vorgestellt, welches die Möglichkeiten und den Nutzen physischer Visualisierungen von persönlichen Daten veranschaulicht. Für Designer und Künstler kann dies zudem als Inspirationsquelle dienen, wie das Potenzial neuer Technologien, wie der digitalen Fabrikation, zur Darstellung persönlicher Daten in physischer Form genutzt werden kann. Des Weiteren wird eine initiale Klassifizierung von physischen Variablen vorgeschlagen mit insgesamt 14 Dimensionen, welche in vier Kategorien gruppiert sind. Damit vervollstĂ€ndigen wir unser Ziel, Forschern und Designern Inspiration und Orientierung zu bieten, um neuartige und effektvolle physische Visualisierungen zu erschaffen

    Analysis and Classification of Shape-Changing Interfaces for Design and Application-based Research

    Get PDF
    Shape-changing interfaces are physically tangible, interactive devices, surfaces, or spaces that allow for rich, organic, and novel experiences with computational devices. Over the last 15 years, research has produced functional prototypes over many use applications; reviews have identified themes and possible future directions but have not yet looked at possible design or application-based research. Here, we gather this information together to provide a reference for designers and researchers wishing to build upon existing prototyping work, using synthesis and discussion of existing shape-changing interface reviews and comprehensive analysis and classification of 84 shape-changing interfaces. Eight categories of prototype are identified alongside recommendations for the field

    Scalable and Extensible Augmented Reality with Applications in Civil Infrastructure Systems.

    Full text link
    In Civil Infrastructure System (CIS) applications, the requirement of blending synthetic and physical objects distinguishes Augmented Reality (AR) from other visualization technologies in three aspects: 1) it reinforces the connections between people and objects, and promotes engineers’ appreciation about their working context; 2) It allows engineers to perform field tasks with the awareness of both the physical and synthetic environment; 3) It offsets the significant cost of 3D Model Engineering by including the real world background. The research has successfully overcome several long-standing technical obstacles in AR and investigated technical approaches to address fundamental challenges that prevent the technology from being usefully deployed in CIS applications, such as the alignment of virtual objects with the real environment continuously across time and space; blending of virtual entities with their real background faithfully to create a sustained illusion of co- existence; integrating these methods to a scalable and extensible computing AR framework that is openly accessible to the teaching and research community, and can be readily reused and extended by other researchers and engineers. The research findings have been evaluated in several challenging CIS applications where the potential of having a significant economic and social impact is high. Examples of validation test beds implemented include an AR visual excavator-utility collision avoidance system that enables spotters to ”see” buried utilities hidden under the ground surface, thus helping prevent accidental utility strikes; an AR post-disaster reconnaissance framework that enables building inspectors to rapidly evaluate and quantify structural damage sustained by buildings in seismic events such as earthquakes or blasts; and a tabletop collaborative AR visualization framework that allows multiple users to observe and interact with visual simulations of engineering processes.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/96145/1/dsuyang_1.pd

    tCAD: a 3D modeling application on a depth enhanced tabletop computer

    Get PDF
    Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.Universidade da Madeir
    • 

    corecore