3,379 research outputs found

    Decentralized Coordination of Dynamic Software Updates in the Internet of Things

    Get PDF
    Large scale IoT service deployments run on a high number of distributed, interconnected computing nodes comprising sensors, actuators, gateways and cloud infrastructure. Since IoT is a fast growing, dynamic domain, the implementation of software components are subject to frequent changes addressing bug fixes, quality insurance or changed requirements. To ensure the continuous monitoring and control of processes, software updates have to be conducted while the nodes are operating without losing any sensed data or actuator instructions. Current IoT solutions usually support the centralized management and automated deployment of updates but are restricted to broadcasting the updates and local update processes at all nodes. In this paper we propose an update mechanism for IoT deployments that considers dependencies between services across multiple nodes involved in a common service and supports a coordinated update of component instances on distributed nodes. We rely on LyRT on all IoT nodes as the runtime supporting local disruption-minimal software updates. Our proposed middleware layer coordinates updates on a set of distributed nodes. We evaluated our approach using a demand response scenario from the smart grid domain

    Automating Object Transformations for Dynamic Software Updating via Online Execution Synthesis

    Get PDF
    Dynamic software updating (DSU) is a technique to upgrade a running software system on the fly without stopping the system. During updating, the runtime state of the modified components of the system needs to be properly transformed into a new state, so that the modified components can still correctly interact with the rest of the system. However, the transformation is non-trivial to realize due to the gap between the low-level implementations of two versions of a program. This paper presents AOTES, a novel approach to automating object transformations for dynamic updating of Java programs. AOTES bridges the gap by abstracting the old state of an object to a history of method invocations, and re-invoking the new version of all methods in the history to get the desired new state. AOTES requires no instrumentation to record any data and thus has no overhead during normal execution. We propose and implement a novel technique that can synthesize an equivalent history of method invocations based on the current object state only. We evaluated AOTES on software updates taken from Apache Commons Collections, Tomcat, FTP Server and SSHD Server. Experimental results show that AOTES successfully handled 51 of 61 object transformations of 21 updated classes, while two state-of-the-art approaches only handled 11 and 6 of 61, respectively

    Shortening Time-to-Discovery with Dynamic Software Updates for Parallel High Performance Applications

    Get PDF
    Despite using multiple concurrent processors, a typical high performance parallel application is long-running, taking hours, even days to arrive at a solution. To modify a running high performance parallel application, the programmer has to stop the computation, change the code, redeploy, and enqueue the updated version to be scheduled to run, thus wasting not only the programmer’s time, but also expensive computing resources. To address these inefficiencies, this article describes how dynamic software updates can be used to modify a parallel application on the fly, thus saving the programmer’s time and using expensive computing resources more productively. The net effect of updating parallel applications dynamically reduces their time-to-discovery metrics, the total time it takes from posing a problem to arriving at a solution. To explore the benefits of dynamic updates for high performance applications, this article takes a two-pronged approach. First, we describe our experience in building and evaluating a system for dynamically updating applications running on a parallel cluster. We then review a large body of literature describing the existing state of the art in dynamic software updates and point out how this research can be applied to high performance applications. Our experimental results indicate that dynamic software updates have the potential to become a powerful tool in reducing the time-to-discovery metrics for high performance parallel applications

    Taking time to understand: articulating relationships between technologies and organizations

    Get PDF
    Dynamic relationships between technologies and organizations are investigated through research on digital visualization technologies and their use in the construction sector. Theoretical work highlights mutual adaptation between technologies and organizations but does not explain instances of sustained, sudden, or increasing maladaptation. By focusing on the technological field, I draw attention to hierarchical structuring around inter-dependent levels of technology; technological priorities of diverse groups; power asymmetries and disjunctures between contexts of development and use. For complex technologies, such as digital technologies, I argue these field-level features explain why organizations peripheral to the field may experience difficulty using emerging technology

    Evolving NoSQL Databases Without Downtime

    Full text link
    NoSQL databases like Redis, Cassandra, and MongoDB are increasingly popular because they are flexible, lightweight, and easy to work with. Applications that use these databases will evolve over time, sometimes necessitating (or preferring) a change to the format or organization of the data. The problem we address in this paper is: How can we support the evolution of high-availability applications and their NoSQL data online, without excessive delays or interruptions, even in the presence of backward-incompatible data format changes? We present KVolve, an extension to the popular Redis NoSQL database, as a solution to this problem. KVolve permits a developer to submit an upgrade specification that defines how to transform existing data to the newest version. This transformation is applied lazily as applications interact with the database, thus avoiding long pause times. We demonstrate that KVolve is expressive enough to support substantial practical updates, including format changes to RedisFS, a Redis-backed file system, while imposing essentially no overhead in general use and minimal pause times during updates.Comment: Update to writing/structur
    • …
    corecore