2,859 research outputs found

    Low-density MDS codes and factors of complete graphs

    Get PDF
    We present a class of array code of size n×l, where l=2n or 2n+1, called B-Code. The distances of the B-Code and its dual are 3 and l-1, respectively. The B-Code and its dual are optimal in the sense that i) they are maximum-distance separable (MDS), ii) they have an optimal encoding property, i.e., the number of the parity bits that are affected by change of a single information bit is minimal, and iii) they have optimal length. Using a new graph description of the codes, we prove an equivalence relation between the construction of the B-Code (or its dual) and a combinatorial problem known as perfect one-factorization of complete graphs, thus obtaining constructions of two families of the B-Code and its dual, one of which is new. Efficient decoding algorithms are also given, both for erasure correcting and for error correcting. The existence of perfect one-factorizations for every complete graph with an even number of nodes is a 35 years long conjecture in graph theory. The construction of B-Codes of arbitrary odd length will provide an affirmative answer to the conjecture

    Low-density MDS codes and factors of complete graphs

    Full text link

    A New Class of MDS Erasure Codes Based on Graphs

    Full text link
    Maximum distance separable (MDS) array codes are XOR-based optimal erasure codes that are particularly suitable for use in disk arrays. This paper develops an innovative method to build MDS array codes from an elegant class of nested graphs, termed \textit{complete-graph-of-rings (CGR)}. We discuss a systematic and concrete way to transfer these graphs to array codes, unveil an interesting relation between the proposed map and the renowned perfect 1-factorization, and show that the proposed CGR codes subsume B-codes as their "contracted" codes. These new codes, termed \textit{CGR codes}, and their dual codes are simple to describe, and require minimal encoding and decoding complexity.Comment: in Proceeding of IEEE Global Communications Conference (GLOBECOM

    Shortening array codes and the perfect 1-factorization conjecture

    Get PDF
    The existence of a perfect 1-factorization of the complete graph with n nodes, namely, K_n , for arbitrary even number n, is a 40-year-old open problem in graph theory. So far, two infinite families of perfect 1-factorizations have been shown to exist, namely, the factorizations of K_(p+1) and K_2p , where p is an arbitrary prime number (p > 2) . It was shown in previous work that finding a perfect 1-factorization of K_n is related to a problem in coding, specifically, it can be reduced to constructing an MDS (Minimum Distance Separable), lowest density array code. In this paper, a new method for shortening arbitrary array codes is introduced. It is then used to derive the K_(p+1) family of perfect 1-factorization from the K_2p family. Namely, techniques from coding theory are used to prove a new result in graph theory-that the two factorization families are related

    Cyclic Low-Density MDS Array Codes

    Get PDF
    We construct two infinite families of low density MDS array codes which are also cyclic. One of these families includes the first such sub-family with redundancy parameter r > 2. The two constructions have different algebraic formulations, though they both have the same indirect structure. First MDS codes that are not cyclic are constructed and then by applying a certain mapping to their parity check matrices, non-equivalent cyclic codes with the same distance and density properties are obtained. Using the same proof techniques, a third infinite family of quasi-cyclic codes can be constructed

    Cyclic lowest density MDS array codes

    Get PDF
    Three new families of lowest density maximum-distance separable (MDS) array codes are constructed, which are cyclic or quasi-cyclic. In addition to their optimal redundancy (MDS) and optimal update complexity (lowest density), the symmetry offered by the new codes can be utilized for simplified implementation in storage applications. The proof of the code properties has an indirect structure: first MDS codes that are not cyclic are constructed, and then transformed to cyclic codes by a minimum-distance preserving transformation
    corecore