52 research outputs found

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    Compressed sensing and finite rate of innovation for efficient data acquisition of quantitative acoustic microscopy images

    Get PDF
    La microscopie acoustique quantitative (MAQ) est une modalité d'imagerie bien établie qui donne accès à des cartes paramétriques 2D représentatives des propriétés mécaniques des tissus à une échelle microscopique. Dans la plupart des études sur MAQ, l'échantillons est scanné ligne par ligne (avec un pas de 2µm) à l'aide d'un transducteur à 250 MHz. Ce type d'acquisition permet d'obtenir un cube de données RF 3D, avec deux dimensions spatiales et une dimension temporelle. Chaque signal RF correspondant à une position spatiale dans l'échantillon permet d'estimer des paramètres acoustiques comme par exemple la vitesse du son ou l'impédance. Le temps d'acquisition en MAQ est directement proportionnel à la taille de l'échantillon et peut aller de quelques minutes à quelques dizaines de minutes. Afin d'assurer des conditions d'acquisition stables et étant donnée la sensibilité des échantillons à ces conditions, diminuer le temps d'acquisition est un des grand défis en MAQ. Afin de relever ce défi, ce travail de thèse propose plusieurs solutions basées sur l'échantillonnage compressé (EC) et la théories des signaux ayant un faible nombre de degré de liberté (finite rate of innovation - FRI, en anglais). Le principe de l'EC repose sur la parcimonie des données, sur l'échantillonnage incohérent de celles-ci et sur les algorithmes d'optimisation numérique. Dans cette thèse, les phénomènes physiques derrière la MAQ sont exploités afin de créer des modèles adaptés aux contraintes de l'EC et de la FRI. Plus particulièrement, ce travail propose plusieurs pistes d'application de l'EC en MAQ : un schéma d'acquisition spatiale innovant, un algorithme de reconstruction d'images exploitant les statistiques des coefficients en ondelettes des images paramétriques, un modèle FRI adapté aux signaux RF et un schéma d'acquisition compressée dans le domaine temporel.Quantitative acoustic microscopy (QAM) is a well-accepted modality for forming 2D parameter maps making use of mechanical properties of soft tissues at microscopic scales. In leading edge QAM studies, the sample is raster-scanned (spatial step size of 2µm) using a 250 MHz transducer resulting in a 3D RF data cube, and each RF signal for each spatial location is processed to obtain acoustic parameters, e.g., speed of sound or acoustic impedance. The scanning time directly depends on the sample size and can range from few minutes to tens of minutes. In order to maintain constant experimental conditions for the sensitive thin sectioned samples, the scanning time is an important practical issue. To deal with the current challenge, we propose the novel approach inspired by compressed sensing (CS) and finite rate of innovation (FRI). The success of CS relies on the sparsity of data under consideration, incoherent measurement and optimization technique. On the other hand, the idea behind FRI is supported by a signal model fully characterized as a limited number of parameters. From this perspective, taking into account the physics leading to data acquisition of QAM system, the QAM data can be regarded as an adequate application amenable to the state of the art technologies aforementioned. However, when it comes to the mechanical structure of QAM system which does not support canonical CS measurement manners on the one hand, and the compositions of the RF signal model unsuitable to existing FRI schemes on the other hand, the advanced frameworks are still not perfect methods to resolve the problems that we are facing. In this thesis, to overcome the limitations, a novel sensing framework for CS is presented in spatial domain: a recently proposed approximate message passing (AMP) algorithm is adapted to account for the underlying data statistics of samples sparsely collected by proposed scanning patterns. In time domain, as an approach for achieving an accurate recovery from a small set of samples of QAM RF signals, we employ sum of sincs (SoS) sampling kernel and autoregressive (AR) model estimator. The spiral scanning manner, introduced as an applicable sensing technique to QAM system, contributed to the significant reduction of the number of spatial samples when reconstructing speed of sound images of a human lymph node. Furthermore, the scanning time was also hugely saved due to the merit of the mechanical movement of the proposed sensing pattern. Together with the achievement in spatial domain, the introduction of SoS kernel and AR estimator responsible for an innovation rate sampling and a parameter estimation respectively led to dramatic reduction of the required number of samples per RF signal compared to a conventional approach. Finally, we showed that both data acquisition frameworks based on the CS and FRI can be combined into a single spatio-temporal solution to maximize the benefits stated above

    Sparse and Redundant Representations for Inverse Problems and Recognition

    Get PDF
    Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented

    Steady-state anatomical and quantitative magnetic resonance imaging of the heart using RF-frequencymodulated techniques

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the United States and Europe and generates healthcare costs of hundreds of billions of dollars annually. Conventional methods of diagnosing CVD are often invasive and carry risks for the patient. For example, the gold standard for diagnosing coronary artery disease, a major class of CVD, is x-ray coronary angiography, which has the disadvantages of being invasive, being expensive, using ionizing radiation, and having a ris k of complications. Conversely, coronary MR angiography (MRA) does not use ionizing radiation, can effectively visualize tissues without the need for exogenous contrast agents, and benefits from an adaptable temporal resolution. However, the acquisition time of cardiac MRI is far longer than the temporal scales of cardiac and respiratory motion, necessitating some method of compensating for this motion. The free-running framework is a novel development in our lab, benefitting from advances over the past three decades, that attempts to address disadvantages of previous cardiac MRI approaches: it provides fully self-gated 5D cardiac MRI with a simplified workflow, improved ease-of-use, reduced operator dependence, and automatic patient-specific motion detection. Free-running imaging increases the amount of information available to the clinician and is flexible enough to be translated to different app lications within cardiac MRI. Moreover, the self-gating of the free-running framework decoupled the acquisition from the motion compensation and thereby opened up cardiac MRI to the wider class of steady-state-based techniques utilizing balanced steady-state free precession (bSSFP) sequences, which have the benefits of practical simplicity and high signal-to-noise ratio. The focus of this thesis was therefore on the application of steady- state techniques to cardiac MRI. The first part addressed the long acquisition time of the current free-running framework and focused on anatomical coronary imaging. The published protocol of the free- running framework used an interrupted bSSFP acquisition where CHESS fat saturation modules were inserted to provide blood-fat contrast, as they suppress the signal of fat tissue surrounding the coronary arteries, and were followed by ramp-up pulses to reduce artefacts arising from the return to steady-state. This interrupted acquisition, however, suffered from an interrupted steady-state, reduced time efficiency, and higher specific absorption rate (SAR). Using novel lipid-insensitive binomial off-resonant RF excitation (LIBRE) pulses developed in our lab, the first project showed that LIBRE pulses incorporated into an uninterrupted free-running bSSFP sequence could be successfully used for 5D cardiac MRI at 1.5T. The free-running LIBRE approach reduced the acquisition time and SAR relative to the previous interrupted approach while maintaining image quality and vessel conspicuity. Furthermore, this had been the first successful use of a fat-suppressing RF excitation pulse in an uninterrupted bSSFP sequence for cardiac imaging, demonstrating that uninterrupted bSSFP can be used for cardiac MRI and addressing the problem of clinical sequence availability. Inspired by the feasibility of uninterrupted bSSFP for cardiac MRI, the second part investigated the potential of PLANET, a novel 3D multiparametric mapping technique, for free-running 5D myocardial mapping. PLANET utilizes a phase-cycled bSSFP acquisition and a direct ellipse-fitting algorithm to calculate T1 and T2 relaxation times, which suggested that it could be readily integrated into the free-running framework without interrupting the steady-state. After initially calibrating the acquisition, the possibility of accelerating the static PLANET acquisition was explored prior to applying it to the moving heart. It was shown that PLANET accuracy and precision could be maintained with two-fold acceleration with a 3D Cartesian spiral trajectory, suggesting that PLANET for myocardial mapping with the free-running 5D radial acquisition is feasible. Further work should investigate optimizing the reconstruction scheme, improving the coil sensitivity estimate, and examining the use of the radial trajectory with a view to implementing free-running 5D myocardial T1 and T2 mapping. This thesis presents two approaches utilizing RF-frequency-modulated steady-state techniques for cardiac MRI. The first approach involved the novel application of an uninterrupted bSSFP acquisition with off-resonant RF excitation for anatomical coronary imaging. The second approach investigated the use of phase-cycled bSSFP for free-running 5D myocardial T1 and T2 mapping. Both methods addressed the challenge of clinical availability of sequences in cardiac MRI, by showing that a common and simple sequence like bSSFP can be used for acquisition while the steps of motion compensation and reconstruction can be handled offline, and thus have the potential to improve adoption of cardiac MRI. -- Les maladies cardiovasculaires (MCV) représentent la principale cause de décès aux États-Unis et en Europe et génèrent des coûts de santé de plusieurs centaines de milliards de dollars par an. Les méthodes conventionnelles de diagnostic des MCV sont souvent invasives et comportent des risques pour le patient. Par exemple, la méthode de référence pour le diagnostic de la maladie coronarienne, une catégorie majeure de MCV, est la coronarographie par rayons X qui a comme inconvénients son caractère invasif, son coût, l’utilisation de rayonnements ionisants et le risque de complications. A l’inverse, l'angiographie coronarienne par résonance magnétique (ARM) n'utilise pas de rayonnements ionisants, permet de visualiser efficacement les tissus sans avoir recours à des agents de contraste exogènes et bénéficie d'une résolution temporelle ajustable. Cependant, le temps d'acquisition en IRM cardiaque est bien plus long que les échelles temporelles des mouvements cardiaques et respiratoires en jeu, ce qui rend la compensation de ces mouvements indispensable. Le cadre dit de « free -running » est un nouveau développement de notre laboratoire qui bénéficie des progrès réalisés au cours des trois dernières décennies et tente de remédier aux inconvénients des approches précédentes pour l'IRM cardiaque : il fournit une IRM cardiaque en cinq dimensions (5D) complètement « self-gated » , c’est-à-dire capable de détecter les mouvements cardiaques et respiratoires, forte d’une implémentation simplifiée, d’une plus grande facilité d'utilisation, d’une dépendance réduite vis-à-vis de l'opérateur et d’une détection automatique des mouvements spécifiques du patient. L'imagerie « free- running » augmente la quantité d'informations à disposition du clinicien et est suffisamment flexible pour être appliquée à différents domaines de l'IRM cardiaque. De plus, le « self-gating » du cadre « free-running » a découplé l'acquisition de la compensation de mouvement et a ainsi ouvert l'IRM cardiaque à la classe plus large des techniques basées sur l'état stationnaire utilisant des séquences de précession libre équilibrée en état stationnaire (bSSFP), qui se distinguent par leur simplicité d’utilisation et leur rapport signal sur bruit élevé. Le thème de cette thèse est donc l'application des techniques basées sur l'état stationnaire à l'IRM cardiaque. La première partie porte sur le long temps d'acquisition de l'actuel cadre « free-running» et se concentre sur l'imagerie anatomique coronaire. Le protocole publié utilise une acquisition bSSFP interrompue où des modules de saturation de graisse (CHESS) sont insérés de façon à fournir un contraste sang-graisse puisqu’ils suppriment le signal du tissu graisseux entourant les artères coronaires, et sont suivis par des impulsions en rampe pour réduire les artefacts résultant du retour à l'état stable. Cette acquisition interrompue souffre cependant d'un état d'équilibre interrompu, d'une efficacité temporelle réduite et d'un débit d'absorption spécifique (DAS) plus élevé. En utilisant les nouvelles impulsions d'excitation radiofréquence (RF) binomiales hors -résonance insensibles aux lipides (LIBRE) développées dans notre laboratoi re, ce premier projet montre que les impulsions LIBRE incorporées dans une séquence bSSFP ininterrompue et « free-running » peuvent être utilisées avec succès pour l'IRM cardiaque 5D à 1,5 T. L'approche « free-running LIBRE » permet de réduire le temps d'acquisition et le DAS par rapport à l'approche interrompue précédente, tout en maintenant la perceptibilité des artères coronariennes. En outre, il s'agit de la première utilisation réussie d'une impulsion d'excitation RF supprimant la graisse dans une séquence bSSFP ininterrompue pour l'imagerie cardiaque, ce qui démontre le potentiel d’utilisation de la séquence bSSFP ininterrompue pour l'IRM cardiaque et résout le problème de la disponibilité de la séquence en clinique. Inspirée par la faisabilité d’utilisation de la séquence bSSFP ininterrompue pour l'IRM cardiaque, la deuxième partie étudie le potentiel de PLANET, une nouvelle technique de cartographie 3D multiparamétrique, pour la cartographie 5D du myocarde via l’imagerie « free-running ». PLANET utilise une acquisition bSSFP à cycle de phase et un algorithme d'ajustement d'ellipse direct pour calculer les temps de relaxation T1 et T2, ce qui suggère que cette méthode pourrait être facilement intégrée au cadre « free - running » sans interruption de l’état d'équilibre. Après calibration de l'acquisition, nous explorons la possibilité d'accélérer l'acquisition statique de PLANET pour l'appliquer au cœur. Nous démontrons que l'exactitude et la précision de PLANET peuvent être maintenues pour une accélération double avec une trajectoire 3D cartésienne en spirale, ce qui suggère que PLANET est réalisable pour la cartographie du myocarde avec une acquisition radiale 5D « free-running ». D'autres travaux devraient porter sur l'optimisation du schéma de reconstruction, l'amélioration de l'estimation de la sensibilité de l’antenne et l'examen de l'utilisation de la trajectoire radiale en vue de la mise en œuvre de la cartographie 5D « free-running » T1 et T2 du myocarde. Cette thèse présente deux approches utilisant des techniques de modulation de fréquence radio en état stationnaire pour l'IRM cardiaque. La première approche implique l'application nouvelle d'une acquisition bSSFP ininterrompue avec une excitation RF hors résonance pour l'imagerie anatomique coronaire. La seconde approche porte sur l'utilisation d’une séquence bSSFP à cycle de phase pour la cartographie 5D T1 et T2 du myocarde. Ces deux méthodes permettent de répondre au défi posé par la disponibilité des séquences en IRM cardiaque en montrant qu'une séquence commune et simple comme la bSSFP peut être utilisée pour l'acquisition, tandis que les étapes de compensation du mouvement et de reconstruction peuvent être traitées hors ligne. Ainsi, ces méthodes ont le potentiel de favoriser l'adoption de l'IRM cardiaque

    Dual-mode photoacoustic and ultrasound imaging system based on a Fabry-Pérot scanner

    Get PDF
    The planar Fabry-Pérot (FP) scanner is an ultrasound detector that simultaneously provides high sensitivity, a high density of small (sub-100 μm) acoustic elements, and a broad bandwidth (> 30 MHz). These features enable the FP scanner to acquire high-resolution 3D in vivo photoacoustic images of biological tissues up to depths of approximately 10 mm. The aim was to add complementary morphological ultrasound contrast to photoacoustic images to extend their clinical applicability. This was achieved by developing a dual-mode photoacoustic and ultrasound imaging system based on the FP scanner, which was modified to transmit optically generated ultrasound. The FP sensor head was coated with an optically absorbing polydimethylsiloxane(PDMS) composite layer, which was excited with nanosecond laser pulses to generate broadband planar ultrasound waves for pulse-echo imaging. First, an all-optical ultrasound system was developed using a highly absorbing carbon nanotube-PDMS composite coating. The system was characterised with a series of experiments, and its imaging performance was tested on tissue mimicking phantoms and ex vivo tissue samples. Second, the effect of the frequency content of the detected signals and the effect of spatial aliasing on the image quality were investigated in simulation. A broadband system was found to reduce the effect of spatial undersampling of high frequencies which results in a reduction of contrast due to the formation of grating lobe artefacts. Third, to improve the image quality, frequency and angle compounding were explored in simulations and experimentally. Coherent and incoherent compounding were considered, as well as the effect of the filter bandwidth on frequency compounded images, and the influence of the number and spread of angles used in angle compounded images. Finally, a dual- mode photoacoustic and ultrasound imaging system was demonstrated with a gold nanoparticle-PDMS composite which enabled wavelength-selective absorption of light. The system was shown to obtain high-resolution 3D dual-mode images providing complementary contrast from optically absorbing and acoustically scattering structures

    Structure-Constrained Basis Pursuit for Compressively Sensing Speech

    Get PDF
    Compressed Sensing (CS) exploits the sparsity of many signals to enable sampling below the Nyquist rate. If the original signal is sufficiently sparse, the Basis Pursuit (BP) algorithm will perfectly reconstruct the original signal. Unfortunately many signals that intuitively appear sparse do not meet the threshold for sufficient sparsity . These signals require so many CS samples for accurate reconstruction that the advantages of CS disappear. This is because Basis Pursuit/Basis Pursuit Denoising only models sparsity. We developed a Structure-Constrained Basis Pursuit that models the structure of somewhat sparse signals as upper and lower bound constraints on the Basis Pursuit Denoising solution. We applied it to speech, which seems sparse but does not compress well with CS, and gained improved quality over Basis Pursuit Denoising. When a single parameter (i.e. the phone) is encoded, Normalized Mean Squared Error (NMSE) decreases by between 16.2% and 1.00% when sampling with CS between 1/10 and 1/2 the Nyquist rate, respectively. When bounds are coded as a sum of Gaussians, NMSE decreases between 28.5% and 21.6% in the same range. SCBP can be applied to any somewhat sparse signal with a predictable structure to enable improved reconstruction quality with the same number of samples

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    PASSIVE SENSING WITH SNAPPING SHRIMP NOISE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Interferometric synthetic aperture sonar system supported by satellite

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    corecore