418,201 research outputs found

    Slocalization: Sub-{\mu}W Ultra Wideband Backscatter Localization

    Full text link
    Ultra wideband technology has shown great promise for providing high-quality location estimation, even in complex indoor multipath environments, but existing ultra wideband systems require tens to hundreds of milliwatts during operation. Backscatter communication has demonstrated the viability of astonishingly low-power tags, but has thus far been restricted to narrowband systems with low localization resolution. The challenge to combining these complimentary technologies is that they share a compounding limitation, constrained transmit power. Regulations limit ultra wideband transmissions to just -41.3 dBm/MHz, and a backscatter device can only reflect the power it receives. The solution is long-term integration of this limited power, lifting the initially imperceptible signal out of the noise. This integration only works while the target is stationary. However, stationary describes the vast majority of objects, especially lost ones. With this insight, we design Slocalization, a sub-microwatt, decimeter-accurate localization system that opens a new tradeoff space in localization systems and realizes an energy, size, and cost point that invites the localization of every thing. To evaluate this concept, we implement an energy-harvesting Slocalization tag and find that Slocalization can recover ultra wideband backscatter in under fifteen minutes across thirty meters of space and localize tags with a mean 3D Euclidean error of only 30 cm.Comment: Published at the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN'18

    Efficient Integer Frequency Offset Estimation Architecture for Enhanced OFDM Synchronization

    Get PDF
    An integer frequency offset (IFO), in orthogonal frequency-division multiplexing (OFDM) systems, causes a circular shift of the sub-carrier indices in the frequency domain.IFO can be mitigated through strict RF front-end design but this is challenging and expensive. Therefore, IFO is estimated and removed at baseband, allowing the RF front-end specification to be relaxed, thus reducing system cost. For applications susceptible to Doppler shift, and multi-standard radios requiring wide frequency range access, careful RF design may be insufficient without IFO estimation. This paper proposes a novel approach for IFO estimation with reduced power consumption and computational cost. A four-fold resource sharing architecture reduces computational cost, while a multiplierless technique and carefully optimised wordlengths yield further power reduction while maintaining a good accuracy. The novel method is shown to achieve excellent performance, similar to the theoretically achievable bound. In fact, performance is significantly better than conventional techniques, while being much more efficient. When implemented for IEEE 802.16-2009, the proposed method saves 78% power over the conventional technique on low-power FPGA devices. The method is applicable to IEEE 802.11 and IEEE 802.22

    Multi Detector Fusion of Dynamic TOA Estimation using Kalman Filter

    Full text link
    In this paper, we propose fusion of dynamic TOA (time of arrival) from multiple non-coherent detectors like energy detectors operating at sub-Nyquist rate through Kalman filtering. We also show that by using multiple of these energy detectors, we can achieve the performance of a digital matched filter implementation in the AWGN (additive white Gaussian noise) setting. We derive analytical expression for number of energy detectors needed to achieve the matched filter performance. We demonstrate in simulation the validity of our analytical approach. Results indicate that number of energy detectors needed will be high at low SNRs and converge to a constant number as the SNR increases. We also study the performance of the strategy proposed using IEEE 802.15.4a CM1 channel model and show in simulation that two sub-Nyquist detectors are sufficient to match the performance of digital matched filter

    MmWave Massive MIMO Based Wireless Backhaul for 5G Ultra-Dense Network

    Get PDF
    Ultra-dense network (UDN) has been considered as a promising candidate for future 5G network to meet the explosive data demand. To realize UDN, a reliable, Gigahertz bandwidth, and cost-effective backhaul connecting ultra-dense small-cell base stations (BSs) and macro-cell BS is prerequisite. Millimeter-wave (mmWave) can provide the potential Gbps traffic for wireless backhaul. Moreover, mmWave can be easily integrated with massive MIMO for the improved link reliability. In this article, we discuss the feasibility of mmWave massive MIMO based wireless backhaul for 5G UDN, and the benefits and challenges are also addressed. Especially, we propose a digitally-controlled phase-shifter network (DPSN) based hybrid precoding/combining scheme for mmWave massive MIMO, whereby the low-rank property of mmWave massive MIMO channel matrix is leveraged to reduce the required cost and complexity of transceiver with a negligible performance loss. One key feature of the proposed scheme is that the macro-cell BS can simultaneously support multiple small-cell BSs with multiple streams for each smallcell BS, which is essentially different from conventional hybrid precoding/combining schemes typically limited to single-user MIMO with multiple streams or multi-user MIMO with single stream for each user. Based on the proposed scheme, we further explore the fundamental issues of developing mmWave massive MIMO for wireless backhaul, and the associated challenges, insight, and prospect to enable the mmWave massive MIMO based wireless backhaul for 5G UDN are discussed.Comment: This paper has been accepted by IEEE Wireless Communications Magazine. This paper is related to 5G, ultra-dense network (UDN), millimeter waves (mmWave) fronthaul/backhaul, massive MIMO, sparsity/low-rank property of mmWave massive MIMO channels, sparse channel estimation, compressive sensing (CS), hybrid digital/analog precoding/combining, and hybrid beamforming. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=730653
    • …
    corecore