22,694 research outputs found

    Fault diagnostic instrumentation design for environmental control and life support systems

    Get PDF
    As a development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. As part of continous development efforts, a program to evaluate, design, and demonstrate advanced instrumentation fault diagnostics was successfully completed. Fault tolerance designs for reliability and other instrumenation capabilities to increase maintainability were evaluated and studied

    Flight deck engine advisor

    Get PDF
    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations

    Aerospace medicine and biology: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 138 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jun. 1980

    Solid motor diagnostic instrumentation

    Get PDF
    A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 1: Conceptual design

    Get PDF
    The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing

    Estimation of the remaining useful life of hydro generators

    Get PDF
    O monitoramento da condição dos geradores é muito desejável para uma operação confiável de uma usina hidrelétrica. As atividades de manutenção podem ser programadas para evitar falhas inesperadas que podem levar a meses ou anos de máquinas paradas sem geração. Estudos indicam que o isolamento do estator é a principal causa de falha do gerador. Nesse sentido, a base da metodologia proposta é o monitoramento do estado atual do sistema de isolamento do estator de hidrogeradores. Testes de descarga parcial nos enrolamentos do estator são aplicados para acessar a condição de isolamento. Um algoritmo para estimar a vida útil remanescente é a principal contribuição deste trabalho. Esta estimativa é baseada em avaliações estatísticas de hidro-geradores e na condição real do sistema de isolamento do estator. Testes de envelhecimento acelerado em amostras de estator com ampla aquisição de variáveis são realizados para entender o processo de envelhecimento. O algoritmo proposto é testado em casos simulados e em dados reais de um ensaio de ciclo térmico, no qual foi observado a ruptura do isolamento.Agência 1The monitoring of generators’ condition is very desirable for a reliable operation of a hydropower plant. Maintenance activities can be scheduled to avoid unexpected failures that can lead to months or years of machines stopped without generation. Studies indicate that stator insulation is the leading cause of generator failure. In this sense, the proposal methodology’s base is the monitorization of the actual health stage of the stator insulation system of hydro generators. Partial discharge tests in stator windings are applied to access the insulation condition. An algorithm to estimate the remaining useful life is the main contribution of this work. This estimation is based on both statistical evaluations of hydro generators and the stator insulation system’s actual condition. Accelerated aging tests in stator specimens with wide variables acquisition are performed to understand the aging process. The proposed algorithm is tested in simulated cases and real data from a thermal cycle test, which observed an insulation breakdown

    Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays

    Get PDF
    Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected

    An energy-aware architecture : a practical implementation for autonomous underwater vehicles

    Get PDF
    Energy awareness, fault tolerance and performance estimation are important aspects for extending the autonomy levels of today’s autonomous vehicles. Those are related to the concepts of survivability and reliability, two important factors that often limit the trust of end users in conducting large-scale deployments of such vehicles. With the aim of preparing the way for persistent autonomous operations this work focuses its efforts on investigating those effects on underwater vehicles capable of long-term missions. A novel energy-aware architecture for autonomous underwater vehicles (AUVs) is presented. This, by monitoring at runtime the vehicle’s energy usage, is capable of detecting and mitigating failures in the propulsion subsystem, one of the most common sources of mission-time problems. Furthermore it estimates the vehicle’s performance when operating in unknown environments and in the presence of external disturbances. These capabilities are a great contribution for reducing the operational uncertainty that most underwater platforms face during their deployment. Using knowledge collected while conducting real missions the proposed architecture allows the optimisation of on-board resource usage. This improves the vehicle’s effectiveness when operating in unknown stochastic scenarios or when facing the problem of resource scarcity. The architecture has been implemented on a real vehicle, Nessie AUV, used for real sea experiments as part of multiple research projects. These gave the opportunity of evaluating the improvements of the proposed system when considering more complex autonomous tasks. Together with Nessie AUV, the commercial platform IVER3 AUV has been involved in the evaluating the feasibility of this approach. Results and operational experience, gathered both in real sea scenarios and in controlled environment experiments, are discussed in detail showing the benefits and the operational constraints of the introduced architecture, alongside suggestions for future research directions
    • …
    corecore