644 research outputs found

    Power-Based Direction-of-Arrival Estimation Using a Single Multi-Mode Antenna

    Full text link
    Phased antenna arrays are widely used for direction-of-arrival (DoA) estimation. For low-cost applications, signal power or received signal strength indicator (RSSI) based approaches can be an alternative. However, they usually require multiple antennas, a single antenna that can be rotated, or switchable antenna beams. In this paper we show how a multi-mode antenna (MMA) can be used for power-based DoA estimation. Only a single MMA is needed and neither rotation nor switching of antenna beams is required. We derive an estimation scheme as well as theoretical bounds and validate them through simulations. It is found that power-based DoA estimation with an MMA is feasible and accurate

    Experimental analysis of multidimensional radio channels

    Get PDF
    In this thesis new systems for radio channel measurements including space and polarization dimensions are developed for studying the radio propagation in wideband mobile communication systems. Multidimensional channel characterization is required for building channel models for new systems capable of exploiting the spatial nature of the channel. It also gives insight into the dominant propagation mechanisms in complex radio environments, where their prediction is difficult, such as urban and indoor environments. The measurement systems are based on the HUT/IDC wideband radio channel sounder, which was extended to enable real-time multiple output channel measurements at practical mobile speeds at frequencies up to 18 GHz. Two dual-polarized antenna arrays were constructed for 2 GHz, having suitable properties for characterizing the 3-D spatial radio channel at both ends of a mobile communication link. These implementations and their performance analysis are presented. The usefulness of the developed measurement systems is demonstrated by performing channel measurements at 2 GHz and analyzing the experimental data. Spatial channels of both the mobile and base stations are analyzed, as well as the double-directional channel that fully characterizes the propagation between two antennas. It is shown through sample results that spatial domain channel measurements can be used to gain knowledge on the dominant propagation mechanisms or verify the current assumptions. Also new statistical information about scatterer distribution at the mobile station in urban environment is presented based on extensive real-time measurements. The developed techniques and collected experimental data form a good basis for further comparison with existing deterministic propagation models and development of new spatial channel models.reviewe

    A Flexible Low-Cost Hybrid Beamforming Structure for Practical Beamforming Applications

    Get PDF
    In this paper, a simplified yet flexible half-duplex hybrid beamforming (HBF) architecture along with the adaptive beam scanning and direction-finding methodology for the 360° HBF system has been proposed. The structure is constructed using up to 4 units of n × 4 antenna arrays with choice of gain and coverage sector, which is powered by only 4 RF beamforming chains. In addition, the flexible beamforming structure is able to enable beamforming function of any legacy transceiver. The proposed architecture exhibits prominent advantages in reducing the hardware complexity and cost of the HBF system by 4 folds and offers the field-friendly feature with the flexible gain and coverage concept that allow only the necessary array to be installed

    RSSI-Based direction-of-departure estimation in bluetooth low energy using an array of frequency-steered leaky-wave antennas

    Get PDF
    This paper presents a novel advanced Bluetooth Low Energy (BLE) beacon, which is based on an array of frequency-steered leaky-wave antennas (LWAs), as a transmitter for a Direction-of-Departure (DoD) estimation system. The LWA array is completely passive, fabricated in a low-cost FR4 printed-circuit board and designed to multiplex to different angular directions in space each one of the three associated BLE advertising channels that are used for periodically transmitting the ID of the beacon. This way, the use of more expensive hardware associated to electronic phased-array steering/beam-switching is avoided. Four commercial BLE modules are connected to the four ports of the array, producing an advanced BLE beacon that synthesizes twelve directive beams (one per each port and advertising channel) distributed over a wide Field of View (FoV) of 120 degrees in the azimuthal plane. Then, any BLE enabled IoT device located within this FoV can scan the messages from the beacon and obtain the corresponding Received Signal Strength Indicator (RSSI) of these twelve beams to estimate the relative DoD by using amplitude-monopulse signal processing, thus dispensing from complex In-phase/Quadrature (IQ) data acquisition or high computational load.We propose an angular windowing technique to eliminate angular ambiguities and increase the angular resolution, reporting a root mean squared angular error of 3.7Âş in a wide FoV of 120Âş.This work was supported in part by the Spanish National projects TEC2016-75934-C4-4-R and TEC2016-76465-C2-1-R, and in part by the 2018 UPCT Santander Research Grant

    Spatial Identification Methods and Systems for RFID Tags

    Get PDF
    Disertační práce je zaměřena na metody a systémy pro měření vzdálenosti a lokalizaci RFID tagů pracujících v pásmu UHF. Úvod je věnován popisu současného stavu vědeckého poznání v oblasti RFID prostorové identifikace a stručnému shrnutí problematiky modelování a návrhu prototypů těchto systémů. Po specifikaci cílů disertace pokračuje práce popisem teorie modelování degenerovaného kanálu pro RFID komunikaci. Detailně jsou rozebrány metody měření vzdálenosti a odhadu směru příchodu signálu založené na zpracování fázové informace. Pro účely lokalizace je navrženo několik scénářů rozmístění antén. Modely degenerovaného kanálu jsou simulovány v systému MATLAB. Významná část této práce je věnována konceptu softwarově definovaného rádia (SDR) a specifikům jeho adaptace na UHF RFID, která využití běžných SDR systémů značně omezují. Diskutována je zejména problematika průniku nosné vysílače do přijímací cesty a požadavky na signál lokálního oscilátoru používaný pro směšování. Prezentovány jsou tři vyvinuté prototypy: experimentální dotazovač EXIN-1, měřicí systém založený na platformě Ettus USRP a anténní přepínací matice pro emulaci SIMO systému. Závěrečná část je zaměřena na testování a zhodnocení popisovaných lokalizačních technik, založených na měření komplexní přenosové funkce RFID kanálu. Popisuje úzkopásmové/širokopásmové měření vzdálenosti a metody odhadu směru signálu. Oba navržené scénáře rozmístění antén jsou v závěru ověřeny lokalizačním měřením v reálných podmínkách.The doctoral thesis is focused on methods and systems for ranging and localization of RFID tags operating in the UHF band. It begins with a description of the state of the art in the field of RFID positioning with short extension to the area of modeling and prototyping of such systems. After a brief specification of dissertation objectives, the thesis overviews the theory of degenerate channel modeling for RFID communication. Details are given about phase-based ranging and direction of arrival finding methods. Several antenna placement scenarios are proposed for localization purposes. The degenerate channel models are simulated in MATLAB. A significant part of the thesis is devoted to software defined radio (SDR) concept and its adaptation for UHF RFID operation, as it has its specialties which make the usage of standard SDR test equipment very disputable. Transmit carrier leakage into receiver path and requirements on local oscillator signals for mixing are discussed. The development of three experimental prototypes is also presented there: experimental interrogator EXIN-1, measurement system based on Ettus USRP platform, and antenna switching matrix for an emulation of SIMO system. The final part is focused on testing and evaluation of described positioning techniques based on complex backscatter channel transfer function measurement. Both narrowband/wideband ranging and direction of arrival methods are validated. Finally, both proposed antenna placement scenarios are evaluated with real-world measurements.
    • …
    corecore