231 research outputs found

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Overview of positioning technologies from fitness-to-purpose point of view

    Get PDF
    Even though Location Based Services (LBSs) are being more and more widely-used and this shows a promising future, there are still many challenges to deal with, such as privacy, reliability, accuracy, cost of service, power consumption and availability. There is still no single low-cost positioning technology which provides position of its users seamlessly indoors and outdoors with an acceptable level of accuracy and low power consumption. For this reason, fitness of positioning service to the purpose of LBS application is an important parameter to be considered when choosing the most suitable positioning technology for an LBS. This should be done for any LBS application, since each application may need different requirements. Some location-based applications, such as location-based advertisements or Location-Based Social Networking (LBSN), do not need very accurate positioning input data, while for some others, e.g. navigation and tracking services, highly-accurate positioning is essential. This paper evaluates different positioning technologies from fitness-to-purpose point of view for two different applications, public transport information and family/friend tracking

    Development of a Standalone Pedestrian Navigation System Utilizing Sensor Fusion Strategies

    Get PDF
    Pedestrian inertial navigation systems yield the foundational information required for many possible indoor navigation and positioning services and applications, but current systems have difficulty providing accurate locational information due to system instability. Through the implementation of a low-cost ultrasonic ranging device added to a foot-mounted inertial navigation system, the ability to detect surrounding obstacles, such as walls, is granted. Using these detected walls as a basis of correction, an intuitive algorithm that can be added to already established systems was developed that allows for the demonstrable reduction of final location errors. After a 160 m walk, final location errors were reduced from 8.9 m to 0.53 m, a reduction of 5.5% of the total distance walked. Furthermore, during a 400 m walk the peak error was reduced from 10.3 m to 1.43 m. With long term system accuracy and stability being largely dependent on the ability of gyroscopes to accurately estimate changes in yaw angle, the purposed system helps correct these inaccuracies, providing strong plausible implementation in obstacle rich environments such as those found indoors

    Improving Foot-Mounted Inertial Navigation Through Real-Time Motion Classification

    Full text link
    We present a method to improve the accuracy of a foot-mounted, zero-velocity-aided inertial navigation system (INS) by varying estimator parameters based on a real-time classification of motion type. We train a support vector machine (SVM) classifier using inertial data recorded by a single foot-mounted sensor to differentiate between six motion types (walking, jogging, running, sprinting, crouch-walking, and ladder-climbing) and report mean test classification accuracy of over 90% on a dataset with five different subjects. From these motion types, we select two of the most common (walking and running), and describe a method to compute optimal zero-velocity detection parameters tailored to both a specific user and motion type by maximizing the detector F-score. By combining the motion classifier with a set of optimal detection parameters, we show how we can reduce INS position error during mixed walking and running motion. We evaluate our adaptive system on a total of 5.9 km of indoor pedestrian navigation performed by five different subjects moving along a 130 m path with surveyed ground truth markers.Comment: In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN'17), Sapporo, Japan, Sep. 18-21, 201

    Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements

    Full text link
    We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m

    Map Matching by Using Inertial Sensors – Literature Review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a signicant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.</p

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Visual-Inertial first responder localisation in large-scale indoor training environments.

    Get PDF
    Accurately and reliably determining the position and heading of first responders undertaking training exercises can provide valuable insights into their situational awareness and give a larger context to the decisions made. Measuring first responder movement, however, requires an accurate and portable localisation system. Training exercises of- ten take place in large-scale indoor environments with limited power infrastructure to support localisation. Indoor positioning technologies that use radio or sound waves for localisation require an extensive network of transmitters or receivers to be installed within the environment to ensure reliable coverage. These technologies also need power sources to operate, making their use impractical for this application. Inertial sensors are infrastructure independent, low cost, and low power positioning devices which are attached to the person or object being tracked, but their localisation accuracy deteriorates over long-term tracking due to intrinsic biases and sensor noise. This thesis investigates how inertial sensor tracking can be improved by providing correction from a visual sensor that uses passive infrastructure (fiducial markers) to calculate accurate position and heading values. Even though using a visual sensor increase the accuracy of the localisation system, combining them with inertial sensors is not trivial, especially when mounted on different parts of the human body and going through different motion dynamics. Additionally, visual sensors have higher energy consumption, requiring more batteries to be carried by the first responder. This thesis presents a novel sensor fusion approach by loosely coupling visual and inertial sensors to create a positioning system that accurately localises walking humans in largescale indoor environments. Experimental evaluation of the devised localisation system indicates sub-metre accuracy for a 250m long indoor trajectory. The thesis also proposes two methods to improve the energy efficiency of the localisation system. The first is a distance-based error correction approach which uses distance estimation from the foot-mounted inertial sensor to reduce the number of corrections required from the visual sensor. Results indicate a 70% decrease in energy consumption while maintaining submetre localisation accuracy. The second method is a motion type adaptive error correction approach, which uses the human walking motion type (forward, backward, or sideways) as an input to further optimise the energy efficiency of the localisation system by modulating the operation of the visual sensor. Results of this approach indicate a 25% reduction in the number of corrections required to keep submetre localisation accuracy. Overall, this thesis advances the state of the art by providing a sensor fusion solution for long-term submetre accurate localisation and methods to reduce the energy consumption, making it more practical for use in first responder training exercises

    Experimental Study of Low Cost Multiple IMU Based Open-source Motion Sensing Platform for Data Logging in Seismic Shaking Table Test

    Get PDF
    Micro-electro-mechanical systems (MEMS) based inertial measurements units (IMUs) have become very popular in recent times because of low cost, small size and non-invasive nature.  One of the major domains of its use is design of wearable sensors for human motion sensing and analysis. As a result, number of open-source motion sensing hardware and software platform have come up. This paper presents experimental study of one such open-source wearable motion sensing platform, Oblu, for measuring structural response of models in seismic shaking table test. Required customization of open-source platform to meet needs of data logging in seismic shaking table test is discussed. Also, the details of post-test data processing and analysis done on another open-source platform Scilab is discussed. To compare the results of experimental study, analysis of similar model, subjected to identical test conditions, is performed using Structural Software for Analysis and Design SAP2000. The study shows potential of using low cost open-source motion sensing platform in comparison to expensive and proprietary accelerometer based data logging systems conventionally used for seismic shaking table tests

    A Drift Eliminated Attitude & Position Estimation Algorithm In 3D

    Get PDF
    Inertial wearable sensors constitute a booming industry. They are self contained, low powered and highly miniaturized. They allow for remote or self monitoring of health-related parameters. When used to obtain 3-D position, velocity and orientation information, research has shown that it is possible to draw conclusion about issues such as fall risk, Parkinson disease and gait assessment. A key issues in extracting information from accelerometers and gyroscopes is the fusion of their noisy data to allow accurate assessment of the disease. This, so far, is an unsolved problem. Typically, a Kalman filter or its nonlinear, non-Gaussian version are implemented for estimating attitude â?? which in turn is critical for position estimation. However, sampling rates and large state vectors required make them unacceptable for the limited-capacity batteries of low-cost wearable sensors. The low-computation cost complementary filter has recently been re-emerging as the algorithm for attitude estimation. We employ it with a heuristic drift elimination method that is shown to remove, almost entirely, the drift caused by the gyroscope and hence generate a fairly accurate attitude and drift-eliminated position estimate. Inertial sensor data is obtained from the 10-axis SP-10C sensor, attached to a wearable insole that is inserted in the shoe. Data is obtained from walking in a structured indoor environment in Votey Hall
    corecore