24,771 research outputs found

    Perceptually-Driven Video Coding with the Daala Video Codec

    Full text link
    The Daala project is a royalty-free video codec that attempts to compete with the best patent-encumbered codecs. Part of our strategy is to replace core tools of traditional video codecs with alternative approaches, many of them designed to take perceptual aspects into account, rather than optimizing for simple metrics like PSNR. This paper documents some of our experiences with these tools, which ones worked and which did not. We evaluate which tools are easy to integrate into a more traditional codec design, and show results in the context of the codec being developed by the Alliance for Open Media.Comment: 19 pages, Proceedings of SPIE Workshop on Applications of Digital Image Processing (ADIP), 201

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 Ă— 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Transcoding of MPEG Bitstreams

    Get PDF
    This paper discusses the problem of transcoding as it may occur in, for instance, the following situation. Suppose a satellite transmits an MPEG-compressed video signal at say 9 Mbit/s. This signal must be relayed at a cable head end. However, since the cable capacity is only limited, the cable head end will want to relay this incoming signal at a lower bit-rate of, say, 5 Mbit/s. The problem is how to convert a compressed video signal of a given bit-rate into a compressed video signal of a lower bit-rate. The specific transcoding problem discussed in this paper is referred to as bit-rate conversion. Basically, a transcoder used for such a purpose will consist of a cascaded decoder and encoder. It is shown in the paper that the complexity of this combination can be significantly reduced. The paper also investigates the loss of picture quality that may be expected when a transcoder is in the transmission chain. The loss of quality as compared to that resulting in the case of transmission without a transcoder is studied by means of computations using simplified models of the transmission chains and by means of using computer simulations of the complete transmission chain. It will be shown that the presence of two quantizers, i.e. cascaded quantization, in the transmission chain is the main cause of extra losses, and it will be shown that the losses in terms of SNR will be some 0.5 Âż 1.0 dB greater than in the case of a transmission chain without a transcoder

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Error concealment using motion field interpolation

    Get PDF
    • …
    corecore