24 research outputs found

    Lossy Multi/Hyperspectral Compression HW Implementation at high data rate

    Get PDF
    Image compression is becoming more and more important, as new multispectral and hyperspectral instruments are going to generate very high data rates due to the increased spatial and spectral resolutions. Transmitting all the acquired data to the ground segment is a serious bottleneck, and compression techniques are a feasible solution to this problem. The CCSDS has established a working group (WG) on multispectral and Hyperspectral Data Compression (MHDC), which has the purpose of standardizing compression techniques to be used onboard. The WG has already standardized a lossless compression algorithm for multispectral and hyperspectral images, and has started working on a lossy compression algorithm. The complexity of lossless compression algorithms is typically larger than that of lossy ones, leading to potentially lower throughputs. Therefore, a careful assessment is required in order to identify techniques that are able to sustain very high data rates. The increased complexity can also lead to increased resource occupancy on a hardware device such as an FPGA. Lossy compression introduces information losses in the images, and these losses must be accurately characterized, and their effect on the applications investigated. For these reasons, developing a lossy algorithm requires a more elaborate process. Under an ESA contract primed by Politecnico of Torino, TSD is currently designing an IP core for FPGA and/or ASIC implementation of a lossy compression algorithm that is being proposed for CCSDS standardization. In addition to the IP core, TSD is developing a HW platform based on the Xilinx Virtex-5 XQR5VFX130, the industry's first high performance rad-hard reconfigurable FPGA for processing-intensive for space systems. Advanced results along with details of electronic platform design will be presented in this paper

    Constant-SNR, rate control and entropy coding for predictive lossy hyperspectral image compression

    Get PDF
    Predictive lossy compression has been shown to represent a very flexible framework for lossless and lossy onboard compression of multispectral and hyperspectral images with quality and rate control. In this paper, we improve predictive lossy compression in several ways, using a standard issued by the Consultative Committee on Space Data Systems, namely CCSDS-123, as an example of application. First, exploiting the flexibility in the error control process, we propose a constant-signal-to-noise-ratio algorithm that bounds the maximum relative error between each pixel of the reconstructed image and the corresponding pixel of the original image. This is very useful to avoid low-energy areas of the image being affected by large errors. Second, we propose a new rate control algorithm that has very low complexity and provides performance equal to or better than existing work. Third, we investigate several entropy coding schemes that can speed up the hardware implementation of the algorithm and, at the same time, improve coding efficiency. These advances make predictive lossy compression an extremely appealing framework for onboard systems due to its simplicity, flexibility, and coding efficiency

    An Hardware Implementation of a Novel Algorithm For Onboard Compression of Multispectral and Hyperspectral Images

    Get PDF
    New multispectral and hyperspectral instruments are going to generate very high data rates due to the increased spatial and spectral resolution. In this context, the compression is a very important part of any onboard data processing system for Earth observation and astronomical missions. More recently, lossless compression has started to be routinely used for spaceborne Earth observation satellites. The CCSDS has established a working group (WG) on Multispectral and Hyperspectral Data Compression (MHDC), which has the purpose of standardizing compression techniques to be used onboard. The WG has already standardized a lossless compression algorithm for multispectral and hyperspectral images, and has started working on a lossy compression algorithm. Under an ESA contract, aimed to investigate new techniques for Lossy multi/hyperspectral compression for very high data rate instruments (HYDRA), TSD in collaboration with Politecnico of Torino, designed an IP core for FPGA and/or ASIC implementation of a lossy compression algorithm. In addition to the IP core, TSD developed a HW platform based on the Xilinx Virtex-5 XQR5VFX130, the industry's first high performance rad-hard reconfigurable FPGA for processing-intensive for space systems. Advanced results along with details of electronic platform design will be presented in this paper

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding

    Fast and Lightweight Rate Control for Onboard Predictive Coding of Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression of hyperspecral images onboard of spacecrafts in light of the excellent rate-distortion performance and low complexity of recent schemes. In this letter we propose a rate control algorithm and integrate it in a lossy extension to the CCSDS-123 lossless compression recommendation. The proposed rate algorithm overhauls our previous scheme by being orders of magnitude faster and simpler to implement, while still providing the same accuracy in terms of output rate and comparable or better image quality

    Isorange pairwise orthogonal transform

    Get PDF
    Spectral transforms are tools commonly employed in multi- and hyperspectral data compression to decorrelate images in the spectral domain. The Pairwise Orthogonal Transform (POT) is one such transform that has been specifically devised for resource-constrained contexts like those found on board satellites or airborne sensors. Combining the POT with a 2D coder yields an efficient compressor for multi- and hyperspectral data. However, a drawback of the original POT is that its dynamic range expansion -i.e., the increase in bit depth of transformed images- is not constant, which may cause problems with hardware implementations. Additionally, the dynamic range expansion is often too large to be compatible with the current 2D standard CCSDS 122.0-B-1. This paper introduces the Isorange Pairwise Orthogonal Transform, a derived transform that has a small and limited dynamic range expansion, compatible with CCSDS 122.0-B-1 in almost all scenarios. Experimental results suggest that the proposed transform achieves lossy coding performance close to that of the original transform. For lossless coding, the original POT and the proposed isorange POT achieve virtually the same performance

    Compression of Spectral Images

    Get PDF

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201
    corecore