374 research outputs found

    A New Approach to Peak Threshold Estimation for Impulsive Noise Reduction Over Power Line Fading Channels

    Get PDF
    Impulsive noise (IN) is a major component that degrades signal integrity in power line communication (PLC) systems. PLC systems driven by orthogonal frequency-division multiplexing (OFDM) have Rayleigh distributed amplitudes. Based on the dynamic nature of each OFDM symbol, peak amplitude of the symbol was recently shown to be a suitable threshold for detecting IN, and this technique outperforms the conventional optimal blanking (COB) scheme. In this study, we improve the dynamic peak-based threshold estimation (DPTE) scheme that relies on the OFDM Rayleigh distributed amplitudes by converting the default Rayleigh distribution to uniform distribution to unveil IN with power levels below that of the conventional peak signal. Then, we perform nonlinear mitigation processing on the received signals, whose amplitudes exceed the uniformly distributed amplitude using blanking, a scheme we will refer to as uniformly distributed DPTE (U-DPTE). Our results (based on U-DPTE) significantly outperform the DPTE scheme by up to 4-dB gain in terms of output signal-to-noise ratio (SNR). Additionally and unlike earlier DPTE studies, we propose a novel threshold criterion that compensates the Gaussian noise power-level amplification (after equalization) for achieving the optimal SNR over a log-normal multipath fading channel. The results further reveal the suboptimality of the DPTE scheme over COB

    A new technique for reducing size of a wpt system using two-loop strongly-resonant inductors

    Get PDF
    Mid-range resonant coupling-based high efficient wireless power transfer (WPT) techniques have gained substantial research interest due to the number of potential applications in many industries. This paper presents a novel design of a resonant two-loop WPT technique including the design, fabrication and preliminary results of this proposal. This new design employs a compensation inductor which is combined with the transmitter and receiver loops in order to significantly scale down the size of the transmitter and receiver coils. This can improve the portability of the WPT transmitters in practical systems. Moreover, the benefits of the system enhancement are not only limited to the lessened magnitude of the TX & RX, simultaneously both the weight and the bill of materials are also minimised. The proposed system also demonstrates compatibility with the conventional electronic components such as capacitors hence the development of the TX & RX is simplified. The proposed system performance has been validated using the similarities between the experimental and simulation results. The power efficiency of the prototype circuit is found to be 93%, which is close to the efficiency reached by the conventional design. However, the weight of the transmitter and receiver inductors is now reduced by 78%, while the length of these inductors is reduced by 80%

    Waveform design with constellation extension for OFDM dual-functional radar-communications

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is widely used and works efficiently for the communication, but emerging applications requires OFDM to be flexible to meet sensing requirements. The time-frequency waveform design of OFDM for dual-functional radar-communications (DFRC) is critical to achieve the future communication and sensing requirements. Therefore, we propose a novel method to minimize Cramér-Rao bounds (CRBs) of the delay and Doppler estimation to improve radar performance of an OFDM DFRC system. Although some methods are proposed in the literature to improve the CRBs, these methods either require feedforward signaling or subcarrier reservation. However, it is possible to exploit the constellation extension of quadrature amplitude modulation (QAM) to achieve lower CRBs without these requirements. Therefore, the proposed method provides a transparent communication along with the CRB minimization for conventional OFDM systems. For the evaluation of the proposed method, CRB and symbol error rate (SER) are considered in the simulation results. Furthermore, the theoretical SER analysis of the proposed method is derived to understand the effects of CRB minimization on the communication performance

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Peak-to-average power ratio analysis for OFDM-based mixed-numerology transmissions

    Get PDF
    In this paper, the probability distribution of the peak to average power ratio (PAPR) is analyzed for the mixed numerologies transmission based on orthogonal frequency division multiplexing (OFDM). State of the art theoretical analysis implicitly assumes continuous and symmetric frequency spectrum of OFDM signals. Thus, it is difficult to be applied to the mixed-numerology system due to its complication. By comprehensively considering system parameters, including numerology, bandwidth and power level of each subband, we propose a generic analytical distribution function of PAPR for continuous-time signals based on level-crossing theory. The proposed approach can be applied to both conventional single numerology and mixed-numerology systems. In addition, it also ensures the validity for the noncontinuous-OFDM (NC-OFDM). Given the derived distribution expression, we further investigate the effect of power allocation between different numerologies on PAPR. Simulations are presented and show the good match of the proposed theoretical results

    Comparative Analysis between OFDMA and SC-FDMA: Model, Features and Applications

    Get PDF
    This paper represents Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SCFDMA) techniques along with the Orthogonal Frequency Division Multiplexing (OFDM). The concept, model, features, scopes, applications and limitation for both types of multiple access have been discussed in this paper. In present 4G and 5G cellular communication system, both OFDMA and SC-FDMA have a notable applications. Dividing the available spectrum into overlapping orthogonal narrowband sub bands, OFDMA ensures high spectral efficiency. Besides by allocating multiple sub carriers to each user, OFDMA provides high data rate, reduces inter blockage interference, minimizes frequency selective fading and so on. But it suffers from high peak to average power ration (PAPR) which results in high power consumption at the transmitter end. SC-FDMA is one of the most promising techniques to solve the PAPR problems. Besides it also removes the capacity problem of wireless cellular systems and provides higher spectral efficiency, depending on multiplexing signals based on their spatial signature. On the other hand, in OFDM due to fixed subcarrier allocations for each user and its performance can suffer from narrowband fading and interference

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    corecore