289 research outputs found

    Channel Hardening-Exploiting Message Passing (CHEMP) Receiver in Large-Scale MIMO Systems

    Full text link
    In this paper, we propose a MIMO receiver algorithm that exploits {\em channel hardening} that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the HHH{\bf H}^H{\bf H} matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix H{\bf H} increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes HTHx{\bf H}^T{\bf H}{\bf x}, where x{\bf x} is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the HTH{\bf H}^T{\bf H} matrix. We also propose a simple estimation scheme which directly obtains an estimate of HTH{\bf H}^T{\bf H} (instead of an estimate of H{\bf H}), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the {\em channel hardening-exploiting message passing (CHEMP)} receiver. The proposed CHEMP receiver achieves very good performance in large-scale MIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of H{\bf H}. We also present a convergence analysis of the proposed MPD algorithm. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes

    Iterative decoding for MIMO channels via modified sphere decoding

    Get PDF
    In recent years, soft iterative decoding techniques have been shown to greatly improve the bit error rate performance of various communication systems. For multiantenna systems employing space-time codes, however, it is not clear what is the best way to obtain the soft information required of the iterative scheme with low complexity. In this paper, we propose a modification of the Fincke-Pohst (sphere decoding) algorithm to estimate the maximum a posteriori probability of the received symbol sequence. The new algorithm solves a nonlinear integer least squares problem and, over a wide range of rates and signal-to-noise ratios, has polynomial-time complexity. Performance of the algorithm, combined with convolutional, turbo, and low-density parity check codes, is demonstrated on several multiantenna channels. The results for systems that employ space-time modulation schemes seem to indicate that the best performing schemes are those that support the highest mutual information between the transmitted and received signals, rather than the best diversity gain

    On The Performance Of 1-Bit ADC In Massive MIMO Communication Systems

    Get PDF
    Massive multiple-input multiple-output (MIMO) with low-resolution analog-to-digital converters is a rational solution to deal with hardware costs and accomplish optimal energy efficiency. In particular, utilizing 1-bit ADCs is one of the best choices for massive MIMO systems. This paper investigates the performance of the 1-bit ADC in the wireless coded communication systems where the robust channel coding, protograph low-density parity-check code (LDPC), is employed. The investigation reveals that the performance of the conventional 1-bit ADC with the truncation limit of 3-sigma is severely destroyed by the quantization distortion even when the number of antennas increases to 100. The optimized 1-bit ADC, though having substantial performance gain over the conventional one, is also affected by the quantization distortion at high coding rates and low MIMO configurations. Importantly, the investigation results suggest that the protograph LDPC codes should be re-designed to combat the negative effect of the quantization distortion of the 1-bit ADC
    corecore