312 research outputs found

    Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations

    Full text link
    Large-scale (or massive) multiple-input multiple-output (MIMO) is expected to be one of the key technologies in next-generation multi-user cellular systems, based on the upcoming 3GPP LTE Release 12 standard, for example. In this work, we propose - to the best of our knowledge - the first VLSI design enabling high-throughput data detection in single-carrier frequency-division multiple access (SC-FDMA)-based large-scale MIMO systems. We propose a new approximate matrix inversion algorithm relying on a Neumann series expansion, which substantially reduces the complexity of linear data detection. We analyze the associated error, and we compare its performance and complexity to those of an exact linear detector. We present corresponding VLSI architectures, which perform exact and approximate soft-output detection for large-scale MIMO systems with various antenna/user configurations. Reference implementation results for a Xilinx Virtex-7 XC7VX980T FPGA show that our designs are able to achieve more than 600 Mb/s for a 128 antenna, 8 user 3GPP LTE-based large-scale MIMO system. We finally provide a performance/complexity trade-off comparison using the presented FPGA designs, which reveals that the detector circuit of choice is determined by the ratio between BS antennas and users, as well as the desired error-rate performance.Comment: To appear in the IEEE Journal of Selected Topics in Signal Processin

    A Scalable VLSI Architecture for Soft-Input Soft-Output Depth-First Sphere Decoding

    Full text link
    Multiple-input multiple-output (MIMO) wireless transmission imposes huge challenges on the design of efficient hardware architectures for iterative receivers. A major challenge is soft-input soft-output (SISO) MIMO demapping, often approached by sphere decoding (SD). In this paper, we introduce the - to our best knowledge - first VLSI architecture for SISO SD applying a single tree-search approach. Compared with a soft-output-only base architecture similar to the one proposed by Studer et al. in IEEE J-SAC 2008, the architectural modifications for soft input still allow a one-node-per-cycle execution. For a 4x4 16-QAM system, the area increases by 57% and the operating frequency degrades by 34% only.Comment: Accepted for IEEE Transactions on Circuits and Systems II Express Briefs, May 2010. This draft from April 2010 will not be updated any more. Please refer to IEEE Xplore for the final version. *) The final publication will appear with the modified title "A Scalable VLSI Architecture for Soft-Input Soft-Output Single Tree-Search Sphere Decoding

    High-Throughput Soft-Output MIMO Detector Based on Path-Preserving Trellis-Search Algorithm

    Get PDF
    In this paper, we propose a novel path-preserving trellis-search (PPTS) algorithm and its high-speed VLSI architecture for soft-output multiple-input-multiple-output (MIMO) detection. We represent the search space of the MIMO signal with an unconstrained trellis, where each node in stage of the trellis maps to a possible complex-valued symbol transmitted by antenna. Based on the trellis model, we convert the soft-output MIMO detection problem into a multiple shortest paths problem subject to the constraint that every trellis node must be covered in this set of paths. The PPTS detector is guaranteed to have soft information for every possible symbol transmitted on every antenna so that the log-likelihood ratio (LLR) for each transmitted data bit can be more accurately formed. Simulation results show that the PPTS algorithm can achieve near-optimal error performance with a low search complexity. The PPTS algorithm is a hardware-friendly data-parallel algorithm because the search operations are evenly distributed among multiple trellis nodes for parallel processing. As a case study, we have designed and synthesized a fully-parallel systolic-array detector and two folded detectors for a 4x4 16-QAM system using a 1.08 V TSMC 65-nm CMOS technology.With a 1.18 mm2 core area, the folded detector can achieve a throughput of 2.1 Gbps.With a 3.19 mm2 core area, the fully-parallel systolic-array detector can achieve a throughput of 6.4 Gbps

    An Iterative Soft Decision Based LR-Aided MIMO Detector

    Get PDF
    The demand for wireless and high-rate communication system is increasing gradually and multiple-input-multiple-output (MIMO) is one of the feasible solutions to accommodate the growing demand for its spatial multiplexing and diversity gain. However, with high number of antennas, the computational and hardware complexity of MIMO increases exponentially. This accumulating complexity is a paramount problem in MIMO detection system directly leading to large power consumption. Hence, the major focus of this dissertation is algorithmic and hardware development of MIMO decoder with reduced complexity for both real and complex domain, which can be a beneficial solution with power efficiency and high throughput. Both hard and soft domain MIMO detectors are considered. The use of lattice reduction (LR) algorithm and on-demand-child-expansion for the reduction of noise propagation and node calculation respectively are the two of the key features of our developed architecture, presented in this literature. The real domain iterative soft MIMO decoding algorithm, simulated for 4 × 4 MIMO with different modulation scheme, achieves 1.1 to 2.7 dB improvement over Lease Sphere Decoder (LSD) and more than 8x reduction in list size, K as well as complexity of the detector. Next, the iterative real domain K-Best decoder is expanded to the complex domain with new detection scheme. It attains 6.9 to 8.0 dB improvement over real domain K-Best decoder and 1.4 to 2.5 dB better performance over conventional complex decoder for 8 × 8 MIMO with 64 QAM modulation scheme. Besides K, a new adjustable parameter, Rlimit has been introduced in order to append re-configurability trading-off between complexity and performance. After that, a novel low-power hardware architecture of complex decoder is developed for 8 × 8 MIMO and 64 QAM modulation scheme. The total word length of only 16 bits has been adopted limiting the bit error rate (BER) degradation to 0.3 dB with K and Rlimit equal to 4. The proposed VLSI architecture is modeled in Verilog HDL using Xilinx and synthesized using Synopsys Design Vision in 45 nm CMOS technology. According to the synthesize result, it achieves 1090.8 Mbps throughput with power consumption of 580 mW and latency of 0.33 us. The maximum frequency the design proposed is 181.8 MHz. All of the proposed decoders mentioned above are bounded by the fixed K. Hence, an adaptive real domain K-Best decoder is further developed to achieve the similar performance with less K, thereby reducing the computational complexity of the decoder. It does not require accurate SNR measurement to perform the initial estimation of list size, K. Instead, the difference between the first two minimal distances is considered, which inherently eliminates complexity. In summary, a novel iterative K-Best detector for both real and complex domain with efficient VLSI design is proposed in this dissertation. The results from extensive simulation and VHDL with analysis using Synopsys tool are also presented for justification and validation of the proposed works

    An Iterative Soft Decision Based LR-Aided MIMO Detector

    Get PDF
    The demand for wireless and high-rate communication system is increasing gradually and multiple-input-multiple-output (MIMO) is one of the feasible solutions to accommodate the growing demand for its spatial multiplexing and diversity gain. However, with high number of antennas, the computational and hardware complexity of MIMO increases exponentially. This accumulating complexity is a paramount problem in MIMO detection system directly leading to large power consumption. Hence, the major focus of this dissertation is algorithmic and hardware development of MIMO decoder with reduced complexity for both real and complex domain, which can be a beneficial solution with power efficiency and high throughput. Both hard and soft domain MIMO detectors are considered. The use of lattice reduction (LR) algorithm and on-demand-child-expansion for the reduction of noise propagation and node calculation respectively are the two of the key features of our developed architecture, presented in this literature. The real domain iterative soft MIMO decoding algorithm, simulated for 4 × 4 MIMO with different modulation scheme, achieves 1.1 to 2.7 dB improvement over Lease Sphere Decoder (LSD) and more than 8x reduction in list size, K as well as complexity of the detector. Next, the iterative real domain K-Best decoder is expanded to the complex domain with new detection scheme. It attains 6.9 to 8.0 dB improvement over real domain K-Best decoder and 1.4 to 2.5 dB better performance over conventional complex decoder for 8 × 8 MIMO with 64 QAM modulation scheme. Besides K, a new adjustable parameter, Rlimit has been introduced in order to append re-configurability trading-off between complexity and performance. After that, a novel low-power hardware architecture of complex decoder is developed for 8 × 8 MIMO and 64 QAM modulation scheme. The total word length of only 16 bits has been adopted limiting the bit error rate (BER) degradation to 0.3 dB with K and Rlimit equal to 4. The proposed VLSI architecture is modeled in Verilog HDL using Xilinx and synthesized using Synopsys Design Vision in 45 nm CMOS technology. According to the synthesize result, it achieves 1090.8 Mbps throughput with power consumption of 580 mW and latency of 0.33 us. The maximum frequency the design proposed is 181.8 MHz. All of the proposed decoders mentioned above are bounded by the fixed K. Hence, an adaptive real domain K-Best decoder is further developed to achieve the similar performance with less K, thereby reducing the computational complexity of the decoder. It does not require accurate SNR measurement to perform the initial estimation of list size, K. Instead, the difference between the first two minimal distances is considered, which inherently eliminates complexity. In summary, a novel iterative K-Best detector for both real and complex domain with efficient VLSI design is proposed in this dissertation. The results from extensive simulation and VHDL with analysis using Synopsys tool are also presented for justification and validation of the proposed works

    High Throughput VLSI Architecture for Soft-Output MIMO Detection Based on A Greedy Graph Algorithm

    Get PDF
    Maximum-likelihood (ML) decoding is a very computational- intensive task for multiple-input multiple-output (MIMO) wireless channel detection. This paper presents a new graph based algorithm to achieve near ML performance for soft MIMO detection. Instead of using the traditional tree search based structure, we represent the search space of the MIMO signals with a directed graph and a greedy algorithm is ap- plied to compute the a posteriori probability (APP) for each transmitted bit. The proposed detector has two advantages: 1) it keeps a fixed throughput and has a regular and parallel datapath structure which makes it amenable to high speed VLSI implementation, and 2) it attempts to maximize the a posteriori probability by making the locally optimum choice at each stage with the hope of finding the global minimum Euclidean distance for every transmitted bit x_k element of {-1, +1}. Compared to the soft K-best detector, the proposed solution significantly reduces the complexity because sorting is not required, while still maintaining good bit error rate (BER) performance. The proposed greedy detection algorithm has been designed and synthesized for a 4 x 4 16-QAM MIMO system in a TSMC 65 nm CMOS technology. The detector achieves a maximum throughput of 600 Mbps with a 0.79 mm2 core area.Nokia CorporationNational Science Foundatio
    • …
    corecore