185 research outputs found

    Reduced complexity receivers for trellis coded modulations via punctured trellis codes

    Get PDF
    We introduce a new concept, called matched punctured trellis encoding, that simplifies the complexity of Maximum Likelihood Sequence Estimation (MLSE) receivers for combined trellis encoding and modulations with memory. Matched punctured trellis encoding is applied to tamed frequency modulation (TFM) which is a bandwidth efficient correlative - FM scheme. TFM finds applications in satellite, microwave radio, and mobile communications. Our approach is based on puncturing a rate - 1/2 matched convolutional code to obtain a rate - 2/3 mismatched code. A matched code is one that produces trellis coded modulations of minimum complexity. Puncturing these codes to obtain mismatched codes of higher rates increases the complexity of the trellis coded modulations and in return one can achieve greater coding gains. However, the main idea here is that using suboptimum MLSE receivers, with just the complexity of the matched codes, good coding gains can still be achieved. Furthermore, we conclude that the new rate - 2/3 coded modulations obtained with our approach achieve greater coding gains (for same complexity comparisons) than previously published work. The new codes are obtained by exhaustive computer search techniques and coding gains of up to 5.73 dB for 32 decoder states are achieved. These new codes are good for use with TFM modulation in an AWGN channel

    Wireless receiver designs: from information theory to VLSI implementation

    Get PDF
    Receiver design, especially equalizer design, in communications is a major concern in both academia and industry. It is a problem with both theoretical challenges and severe implementation hurdles. While much research has been focused on reducing complexity for optimal or near-optimal schemes, it is still common practice in industry to use simple techniques (such as linear equalization) that are generally significantly inferior. Although digital signal processing (DSP) technologies have been applied to wireless communications to enhance the throughput, the users' demands for more data and higher rate have revealed new challenges. For example, to collect the diversity and combat fading channels, in addition to the transmitter designs that enable the diversity, we also require the receiver to be able to collect the prepared diversity. Most wireless transmissions can be modeled as a linear block transmission system. Given a linear block transmission model assumption, maximum likelihood equalizers (MLEs) or near-ML decoders have been adopted at the receiver to collect diversity which is an important metric for performance, but these decoders exhibit high complexity. To reduce the decoding complexity, low-complexity equalizers, such as linear equalizers (LEs) and decision feedback equalizers (DFEs) are often adopted. These methods, however, may not utilize the diversity enabled by the transmitter and as a result have degraded performance compared to MLEs. In this dissertation, we will present efficient receiver designs that achieve low bit-error-rate (BER), high mutual information, and low decoding complexity. Our approach is to first investigate the error performance and mutual information of existing low-complexity equalizers to reveal the fundamental condition to achieve full diversity with LEs. We show that the fundamental condition for LEs to collect the same (outage) diversity as MLE is that the channels need to be constrained within a certain distance from orthogonality. The orthogonality deficiency (od) is adopted to quantify the distance of channels to orthogonality while other existing metrics are also introduced and compared. To meet the fundamental condition and achieve full diversity, a hybrid equalizer framework is proposed. The performance-complexity trade-off of hybrid equalizers is quantified by deriving the distribution of od. Another approach is to apply lattice reduction (LR) techniques to improve the ``quality' of channel matrices. We present two widely adopted LR methods in wireless communications, the Lenstra-Lenstra-Lovasz (LLL) algorithm [51] and Seysen's algorithm (SA), by providing detailed descriptions and pseudo codes. The properties of output matrices of the LLL algorithm and SA are also quantified. Furthermore, other LR algorithms are also briefly introduced. After introducing LR algorithms, we show how to adopt them into the wireless communication decoding process by presenting LR-aided hard-output detectors and LR-aided soft-output detectors for coded systems, respectively. We also analyze the performance of proposed efficient receivers from the perspective of diversity, mutual information, and complexity. We prove that LR techniques help to restore the diversity of low-complexity equalizers without increasing the complexity significantly. When it comes to practical systems and simulation tool, e.g., MATLAB, only finite bits are adopted to represent numbers. Therefore, we revisit the diversity analysis for finite-bit represented systems. We illustrate that the diversity of MLE for systems with finite-bit representation is determined by the number of non-vanishing eigenvalues. It is also shown that although theoretically LR-aided detectors collect the same diversity as MLE in the real/complex field, it may show different diversity orders when finite-bit representation exists. Finally, the VLSI implementation of the complex LLL algorithms is provided to verify the practicality of our proposed designs.Ph.D.Committee Chair: Ma, Xiaoli; Committee Member: Anderson, David; Committee Member: Barry, John; Committee Member: Chen, Xu-Yan; Committee Member: Kornegay, Kevi

    Low-density parity-check coding for high-density magnetic recording systems.

    Get PDF
    Our strategy is to combine advanced signal processing techniques, the core of which is soft-decision iterative channel detection, with powerful low-density parity-check (LDPC) coding techniques.Magnetic recording channels (MRCs), including both longitudinal and perpendicular ones, are subject to a number of physical impairments, such as electronic/media noise, intersymbol interference (ISI), erasure, and intertrack interference (ITI). These impairments, if not appropriately handled, are barriers to achieving ultra-high densities. The goal of this dissertation is to study the impact of these multiple impairments on system performance, and to develop techniques to mitigate this impact such that the performance is as close to the theoretical limit of the channel as can be achieved by practical and implementable means.Specifically, the performance of regular LDPC codes on MRCs is first evaluated. Both randomly and structurally constructed codes are considered. Secondly, density evolution is used to analyze and design LDPC codes for MRCs. Results show that better irregular codes can be obtained. Afterwards, this algorithm is modified to include erasures, and erasure detection algorithms are studied. Fourthly, an improved algorithm for LDPC decoding, called signal-to-noise ratio (SNR) mismatch is unveiled. This algorithm may be useful for future practical applications. Finally, a channel detection algorithm for handling ITI in perpendicular recording is optimized, the eventual goal of which is to maximize the attainable track density

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Nouvelle forme d'onde et récepteur avancé pour la télémesure des futurs lanceurs

    Get PDF
    Les modulations à phase continue (CPMs) sont des méthodes de modulations robuste à la noncohérence du canal de propagation. Dans un contexte spatial, les CPM sont utilisées dans la chaîne de transmission de télémesure de la fusée. Depuis les années 70, la modulation la plus usitée dans les systèmes de télémesures est la modulation CPFSK continuous phase frequency shift keying filtrée. Historiquement, ce type de modulation est concaténée avec un code ReedSolomon (RS) afin d'améliorer le processus de décodage. Côté récepteur, les séquences CPM non-cohérentes sont démodulées par un détecteur Viterbi à sortie dure et un décodeur RS. Néanmoins, le gain du code RS n'est pas aussi satisfaisant que des techniques de codage moderne capables d'atteindre la limite de Shannon. Actualiser la chaîne de communication avec des codes atteignant la limite de Shannon tels que les codes en graphe creux, implique deremanier l’architecture du récepteur usuel pour un détecteur à sortie souple. Ainsi, on propose dans cette étude d' élaborer un détecteur treillis à sortie souple pour démoduler les séquences CPM non-cohérentes. Dans un deuxième temps, on concevra des schémas de pré-codages améliorant le comportement asymptotique du récepteur non-cohérent et dans une dernière étape on élabora des codes de parité à faible densité (LDPC) approchant la limite de Shannon

    CROSSTALK-RESILIANT CODING FOR HIGH DENSITY DIGITAL RECORDING

    Get PDF
    Increasing the track density in magnetic systems is very difficult due to inter-track interference (ITI) caused by the magnetic field of adjacent tracks. This work presents a two-track partial response class 4 magnetic channel with linear and symmetrical ITI; and explores modulation codes, signal processing methods and error correction codes in order to mitigate the effects of ITI. Recording codes were investigated, and a new class of two-dimensional run-length limited recording codes is described. The new class of codes controls the type of ITI and has been found to be about 10% more resilient to ITI compared to conventional run-length limited codes. A new adaptive trellis has also been described that adaptively solves for the effect of ITI. This has been found to give gains up to 5dB in signal to noise ratio (SNR) at 40% ITI. It was also found that the new class of codes were about 10% more resilient to ITI compared to conventional recording codes when decoded with the new trellis. Error correction coding methods were applied, and the use of Low Density Parity Check (LDPC) codes was investigated. It was found that at high SNR, conventional codes could perform as well as the new modulation codes in a combined modulation and error correction coding scheme. Results suggest that high rate LDPC codes can mitigate the effect of ITI, however the decoders have convergence problems beyond 30% ITI

    Transmission strategies for broadband wireless systems with MMSE turbo equalization

    Get PDF
    This monograph details efficient transmission strategies for single-carrier wireless broadband communication systems employing iterative (turbo) equalization. In particular, the first part focuses on the design and analysis of low complexity and robust MMSE-based turbo equalizers operating in the frequency domain. Accordingly, several novel receiver schemes are presented which improve the convergence properties and error performance over the existing turbo equalizers. The second part discusses concepts and algorithms that aim to increase the power and spectral efficiency of the communication system by efficiently exploiting the available resources at the transmitter side based upon the channel conditions. The challenging issue encountered in this context is how the transmission rate and power can be optimized, while a specific convergence constraint of the turbo equalizer is guaranteed.Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und der Analyse von effizienten Übertragungs-konzepten für drahtlose, breitbandige Einträger-Kommunikationssysteme mit iterativer (Turbo-) Entzerrung und Kanaldekodierung. Dies beinhaltet einerseits die Entwicklung von empfängerseitigen Frequenzbereichs-entzerrern mit geringer Komplexität basierend auf dem Prinzip der Soft Interference Cancellation Minimum-Mean Squared-Error (SC-MMSE) Filterung und andererseits den Entwurf von senderseitigen Algorithmen, die durch Ausnutzung von Kanalzustandsinformationen die Bandbreiten- und Leistungseffizienz in Ein- und Mehrnutzersystemen mit Mehrfachantennen (sog. Multiple-Input Multiple-Output (MIMO)) verbessern. Im ersten Teil dieser Arbeit wird ein allgemeiner Ansatz für Verfahren zur Turbo-Entzerrung nach dem Prinzip der linearen MMSE-Schätzung, der nichtlinearen MMSE-Schätzung sowie der kombinierten MMSE- und Maximum-a-Posteriori (MAP)-Schätzung vorgestellt. In diesem Zusammenhang werden zwei neue Empfängerkonzepte, die eine Steigerung der Leistungsfähigkeit und Verbesserung der Konvergenz in Bezug auf existierende SC-MMSE Turbo-Entzerrer in verschiedenen Kanalumgebungen erzielen, eingeführt. Der erste Empfänger - PDA SC-MMSE - stellt eine Kombination aus dem Probabilistic-Data-Association (PDA) Ansatz und dem bekannten SC-MMSE Entzerrer dar. Im Gegensatz zum SC-MMSE nutzt der PDA SC-MMSE eine interne Entscheidungsrückführung, so dass zur Unterdrückung von Interferenzen neben den a priori Informationen der Kanaldekodierung auch weiche Entscheidungen der vorherigen Detektions-schritte berücksichtigt werden. Durch die zusätzlich interne Entscheidungsrückführung erzielt der PDA SC-MMSE einen wesentlichen Gewinn an Performance in räumlich unkorrelierten MIMO-Kanälen gegenüber dem SC-MMSE, ohne dabei die Komplexität des Entzerrers wesentlich zu erhöhen. Der zweite Empfänger - hybrid SC-MMSE - bildet eine Verknüpfung von gruppenbasierter SC-MMSE Frequenzbereichsfilterung und MAP-Detektion. Dieser Empfänger besitzt eine skalierbare Berechnungskomplexität und weist eine hohe Robustheit gegenüber räumlichen Korrelationen in MIMO-Kanälen auf. Die numerischen Ergebnisse von Simulationen basierend auf Messungen mit einem Channel-Sounder in Mehrnutzerkanälen mit starken räumlichen Korrelationen zeigen eindrucksvoll die Überlegenheit des hybriden SC-MMSE-Ansatzes gegenüber dem konventionellen SC-MMSE-basiertem Empfänger. Im zweiten Teil wird der Einfluss von System- und Kanalmodellparametern auf die Konvergenzeigenschaften der vorgestellten iterativen Empfänger mit Hilfe sogenannter Korrelationsdiagramme untersucht. Durch semi-analytische Berechnungen der Entzerrer- und Kanaldecoder-Korrelationsfunktionen wird eine einfache Berechnungsvorschrift zur Vorhersage der Bitfehlerwahrscheinlichkeit von SC-MMSE und PDA SC-MMSE Turbo Entzerrern für MIMO-Fadingkanäle entwickelt. Des Weiteren werden zwei Fehlerschranken für die Ausfallwahrscheinlichkeit der Empfänger vorgestellt. Die semi-analytische Methode und die abgeleiteten Fehlerschranken ermöglichen eine aufwandsgeringe Abschätzung sowie Optimierung der Leistungsfähigkeit des iterativen Systems. Im dritten und abschließenden Teil werden Strategien zur Raten- und Leistungszuweisung in Kommunikationssystemen mit konventionellen iterativen SC-MMSE Empfängern untersucht. Zunächst wird das Problem der Maximierung der instantanen Summendatenrate unter der Berücksichtigung der Konvergenz des iterativen Empfängers für einen Zweinutzerkanal mit fester Leistungsallokation betrachtet. Mit Hilfe des Flächentheorems von Extrinsic-Information-Transfer (EXIT)-Funktionen wird eine obere Schranke für die erreichbare Ratenregion hergeleitet. Auf Grundlage dieser Schranke wird ein einfacher Algorithmus entwickelt, der für jeden Nutzer aus einer Menge von vorgegebenen Kanalcodes mit verschiedenen Codierraten denjenigen auswählt, der den instantanen Datendurchsatz des Mehrnutzersystems verbessert. Neben der instantanen Ratenzuweisung wird auch ein ausfallbasierter Ansatz zur Ratenzuweisung entwickelt. Hierbei erfolgt die Auswahl der Kanalcodes für die Nutzer unter Berücksichtigung der Einhaltung einer bestimmten Ausfallwahrscheinlichkeit (outage probability) des iterativen Empfängers. Des Weiteren wird ein neues Entwurfskriterium für irreguläre Faltungscodes hergeleitet, das die Ausfallwahrscheinlichkeit von Turbo SC-MMSE Systemen verringert und somit die Zuverlässigkeit der Datenübertragung erhöht. Eine Reihe von Simulationsergebnissen von Kapazitäts- und Durchsatzberechnungen werden vorgestellt, die die Wirksamkeit der vorgeschlagenen Algorithmen und Optimierungsverfahren in Mehrnutzerkanälen belegen. Abschließend werden außerdem verschiedene Maßnahmen zur Minimierung der Sendeleistung in Einnutzersystemen mit senderseitiger Singular-Value-Decomposition (SVD)-basierter Vorcodierung untersucht. Es wird gezeigt, dass eine Methode, welche die Leistungspegel des Senders hinsichtlich der Bitfehlerrate des iterativen Empfängers optimiert, den konventionellen Verfahren zur Leistungszuweisung überlegen ist
    corecore