5 research outputs found

    ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ๋‚ฎ์€ ๋ณต์žก๋„์˜ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž ์‹ ํ˜ธ์ „์†ก์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ์ด์šฉํ™˜.Advanced wireless communication systems may employ massive multi-input multi-output (m-MIMO) techniques for performance improvement. A base station equipped with an m-MIMO configuration can serve a large number of users by means of beamforming. The m-MIMO channel becomes asymptotically orthogonal to each other as the number of antennas increases to infinity. In this case, we may optimally transmit signal by means of maximum ratio transmission (MRT) with affordable implementation complexity. However, the MRT may suffer from inter-user interference in practical m-MIMO environments mainly due to the presence of insufficient channel orthogonality. The use of zero-forcing beamforming can be a practical choice in m-MIMO environments since it can easily null out inter-user interference. However, it may require huge computational complexity for the generation of beam weight. Moreover, it may suffer from performance loss associated with the interference nulling, referred to transmission performance loss (TPL). The TPL may become serious when the number of users increases or the channel correlation increases in spatial domain. In this dissertation, we consider complexity-reduced multi-user signal transmission in m-MIMO environments. We determine the beam weight to maximize the signal-to-leakage plus noise ratio (SLNR) instead of signal-to-interference plus noise ratio (SINR). We determine the beam direction assuming combined use of MRT and partial ZF that partially nulls out interference. For further reduction of computational complexity, we determine the beam weight based on the approximated SLNR. We consider complexity-reduced ZF beamforming that generates the beam weight in a group-wise manner. We partition users into a number of groups so that users in each group experience low TPL. We approximately estimate the TPL for further reduction of computational complexity. Finally, we determine the beam weight for each user group based on the approximated TPL.์ฐจ์„ธ๋Œ€ ๋ฌด์„  ํ†ต์‹  ์‹œ์Šคํ…œ์—์„œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ (massive MIMO) ๊ธฐ์ˆ ๋“ค์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋Œ€๊ทœ๋ชจ ์•ˆํ…Œ๋‚˜๋ฅผ ๊ฐ€์ง„ ๊ธฐ์ง€๊ตญ์€ ๋งŽ์€ ์ˆ˜์˜ ์‚ฌ์šฉ์ž๋“ค์„ ๋น”ํฌ๋ฐ (beamforming)์œผ๋กœ ์„œ๋น„์Šคํ•ด์ค„ ์ˆ˜ ์žˆ๋‹ค. ์•ˆํ…Œ๋‚˜ ์ˆ˜๊ฐ€ ๋ฌดํ•œํžˆ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ์„œ ์ฑ„๋„์€ ์ ๊ทผ์ ์œผ๋กœ ์„œ๋กœ ์ง๊ต (orthogonal)ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ, ๋‚ฎ์€ ์‹ค์žฅ ๋ณต์žก๋„๋ฅผ ๊ฐ€์ง€๋Š” ์ตœ๋Œ€ ๋น„ ์ „์†ก (maximum ratio transmission)์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์‹ ํ˜ธ์ „์†ก์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ˜„์‹ค์ ์ธ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ๋Š” ์ฑ„๋„ ์ง๊ต์„ฑ์ด ์ถฉ๋ถ„ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๋Œ€ ๋น„ ์ „์†ก์€ ๊ฐ„์„ญ์— ์˜ํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฒช์„ ์ˆ˜ ์žˆ๋‹ค. ์ œ๋กœ-ํฌ์‹ฑ (zero-forcing) ๋น”ํฌ๋ฐ์€ ๊ฐ„์„ญ์„ ์‰ฝ๊ฒŒ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ํ˜„์‹ค์ ์ธ ์„ ํƒ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ œ๋กœ-ํฌ์‹ฑ์€ ๋น” ๊ฐ€์ค‘์น˜ (beam weight) ์ƒ์„ฑ์œผ๋กœ ์ธํ•ด ๋†’์€ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์š”๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ œ๋กœ-ํฌ์‹ฑ์€ ๊ฐ„์„ญ ์ œ๊ฑฐ์— ๋Œ€ํ•œ ๋Œ€๊ฐ€๋กœ ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜ (์ฆ‰, transmission performance loss; TPL)๋ฅผ ๊ฒช์„ ์ˆ˜ ์žˆ๋‹ค. TPL์€ ์‚ฌ์šฉ์ž ์ˆ˜๊ฐ€ ๋งŽ๊ฑฐ๋‚˜ ์ฑ„๋„์˜ ๊ณต๊ฐ„ ์ƒ๊ด€๋„๊ฐ€ ํด ๋•Œ ๋” ์‹ฌ๊ฐํ•ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ๋‚ฎ์€ ๋ณต์žก๋„์˜ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž ์‹ ํ˜ธ์ „์†ก์„ ๊ณ ๋ คํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์‹ ํ˜ธ-๋Œ€-๊ฐ„์„ญ ๋ฐ ์žก์Œ ๋น„ (signal-to-interference plus noise ratio) ๋Œ€์‹  ์‹ ํ˜ธ-๋Œ€-์œ ์ถœ ๋ฐ ์žก์Œ ๋น„ (signal-to-leakage plus noise ratio)๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์ตœ๋Œ€ ๋น„ ์ „์†ก๊ณผ ๊ฐ„์„ญ์„ ์„ ํƒ์ ์œผ๋กœ ์ œ๊ฑฐํ•˜๋Š” ๋ถ€๋ถ„ ์ œ๋กœ-ํฌ์‹ฑ (partial zero-forcing)์˜ ์‚ฌ์šฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋น” ๋ฐฉํ–ฅ์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ๋” ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ๊ทผ์‚ฌํ™”๋œ ์‹ ํ˜ธ-๋Œ€-์œ ์ถœ ๋ฐ ์žก์Œ๋น„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๊ทธ๋ฃน ๊ธฐ๋ฐ˜์œผ๋กœ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋‚ฎ์€ ๋ณต์žก๋„์˜ ์ œ๋กœ-ํฌ์‹ฑ ๋น”ํฌ๋ฐ ์ „์†ก์„ ๊ณ ๋ คํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์‚ฌ์šฉ์ž๋“ค์ด ๋‚ฎ์€ TPL์„ ๊ฐ–๋„๋ก ์‚ฌ์šฉ์ž๋“ค์„ ๋‹ค์ˆ˜์˜ ๊ทธ๋ฃน์œผ๋กœ ๋ถ„๋ฆฌ์‹œํ‚จ๋‹ค. ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ๋” ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ TPL์„ ๊ทผ์‚ฌ์ ์œผ๋กœ ์ถ”์ •ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ๊ทผ์‚ฌํ™”๋œ TPL์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ˜•์„ฑ๋œ ๊ฐ ์‚ฌ์šฉ์ž ๊ทธ๋ฃน์— ๋Œ€ํ•˜์—ฌ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค.Chapter 1. Introduction 1 Chapter 2. System model 10 Chapter 3. Complexity-reduced multi-user signal transmission 15 3.1. Previous works 15 3.2. Proposed scheme 24 3.3. Performance evaluation 47 Chapter 4. User grouping-based ZF transmission 57 4.1. Spatially correlated channel 57 4.2. Previous works 59 4.3. Proposed scheme 66 4.4. Performance evaluation 87 Chapter 5. Conclusions and further research issues 94 Appendix 97 A. Proof of Lemma 3-4 97 B. Proof of Lemma 3-5 100 C. Proof of strict quasi-concavity of SLNR_(k) 101 References 103 Korean Abstract 115Docto

    High spectral efficiency transmission using optical frequency combs

    Get PDF
    Modern long-haul optical communication systems transmit data on all available single-mode fiber dimensions, time, polarization, wavelength, phase and amplitude. Powerful digital signal processing and forward error correction has pushed the per-channel throughput towards its theoretical limits and the bandwidth is limited by the erbium-doped fiber amplifiers. Maximizing the spectral efficiency (SE), i.e. the throughput normalized to bandwidth, is therefore of indisputable importance. Even more so in optical networks as large routing guard-bands drastically reduce the SE of traditional WDM systems. Flex-grid networks with optical superchannels can overcome this limitation. Superchannels consist of multiple tightly packed WDM channels routed as a unit. A comb-based superchannel is formed by encoding independent information onto lines from an optical frequency comb, a multi-wavelength light source fully determined by its center frequency and line spacing. This thesis studies the generation, transmission and detection of comb-based superchannels. Focus is on profiting from unique frequency comb properties to realize systems with capabilities beyond that of conventional systems using arrays of independent lasers. Digital, analog and optical processing schemes are proposed, and combined, to increase the system SE. Superchannel modulation is investigated and a scheme capable of encoding independent information onto the lines from a frequency comb in a single waveguide structure is demonstrated. By combining overhead-optimized pilot-based DSP with a 22GHz-spaced soliton microcomb, superchannel transmission with record SE for distances up to 3000km is realized, closing the performance gap between chip-scale and bulk-optic combs in optical communications. The use of two optical pilot tones (PTs) to phase-lock a transmitter and receiver comb pair is studied, realizing self-homodyne detection of a 50x20Gbaud PM-64QAM superchannel with 4% pilot overhead. The PT gains are furthermore analyzed and a complexity-performance trade-off using a single PT and low complexity DSP is proposed. The scheme is used to demonstrate 12bits/s/Hz SE over the full C-band using 3x50xGBaud PM-256QAM superchannels and DSP-complexity reduction at distances exceeding 1000km is shown. Finally, a comb-enabled multi-channel joint equalization scheme capable of mitigating inter-channel crosstalk and thereby minimizing the SE loss from spectral guard bands is demonstrated

    Conference Proceedings of the Euroregio / BNAM 2022 Joint Acoustic Conference

    Get PDF
    corecore