55 research outputs found

    Esquemas de pré-codificação IA com IB-DFE para sistemas MC-CDMA

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesTo achieve high bit rates, needed to meet the quality of service requirements of future multimedia applications, multi-carrier code division multiple access (MC-CDMA) has been considered as a candidate air-interface. Interference alignment (IA) is a promising technique that allows high capacity gains in interfering channels. On the other hand, iterative block decision feedback equalization (IB-DFE) based receivers can efficiently exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems. In this thesis we proposed an IA precoding at the transmitter with IB-DFE based processing at the receiver for MC-CDMA systems. The IA precoding is applied at chip level instead of the data symbols level, as in the conventional IA based systems. The receiver is designed in two steps: first the equalizers based on zero forcing (ZF) or minimum mean square error (MMSE) are used to remove the aligned users´ interference. Then and after a whitening noise process, an IB-DFE based equalizer is designed to remove both the residual inter-user aligned and inter-carrier interferences. The results have shown that the obtained performance is very close to the one obtained by the optimal matched filter, with few iterations at the receiver side.Para atingir maiores ritmos de transmissão, as futures aplicações multimédia necessitam de atingir a qualidade de serviço necessária. Para isso, o multi-carrier code division multiple access (MC-CDMA) tem sido apontado como um forte candidato para interface ar dos futuros sistemas celulares. O Interference Alignment (IA) ou alinhamento de interferência é uma técnica promissora que permite ter altos ganhos de capacidade em canais com interferência. Por outro lado, temos receptores baseados no conceito iterative block decision feedback equalization(IB-DFE) que conseguem tirar partido, de uma forma eficiente, da inerente diversidade espaço-frequência dos sistemas MIMO MC-CDMA. Nesta dissertação é implementada uma pré-codificação baseada no conceito de IA considerando três transmissores (ou estações base) juntamente, com um processamento IB-DFE no receptor para sistemas MC-CDMA.A pré-codificação é aplicada ao nível de chip em vez de ser aplicado ao nível dos dados. O receptor é projectado em dois passos: em primeiro lugar equalizadores baseados em ZF ou em MMSE são utilizados para remover a interferência alinhada dos restantes utilizadores. De seguida, e após aplicar um processo de branqueamento do ruído ao sinal à saída do primeiro equalizador, um segundo equalizador baseado em IB-DFE é projectado para remover a interferência inter-utilizador residual e também a interferência residual entre portadoras. Os resultados obtidos mostraram-se satisfatórios na remoção da interferência obtendo-se um desempenho muito próximo do obtido considerando um filtro adaptado

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Evaluating the effectiveness of Cooperative/Coordinated Multipoint (CoMP) LTE feature in uplink and downlink transmissions

    Get PDF
    Shannon demonstrated that the channel capacity depends of the ratio of the received signal power to interference plus noise power (SINR). Inter-cell interference caused by neighbouring base stations (BSs) has been identified as one of the most severe problem towards the deployment of LTE technology as it can significantly deteriorate the performance of cellside User Equipment (UE). However, because of regulatory and radiation restrictions as well as operational costs, signal power may only be increased only up to a certain limit to reduce the interference. The other common radio propagation impairment is multipath. Multipath refers to a scenario where multiple copies of a signal propagate to a receiver using different paths. The paths can be created due to signal reflection, scattering and diffraction. As will be discussed later the effects of multipath contribute little to intercell interference because multipath characteristics such as delay spread are compensated for using cyclic prefixes. In this work, we will limit our scope to interference as it has been identified as the main cause of performance degradation for cell edge users due to the full frequency reuse technique used in LTE. To mitigate interference 3GPP devised options of increasing the capacity in LTEAdvanced Release 12 which include the use of spectral aggregation, employing Multiple Input and Multiple Output (MIMO) Antenna techniques, deploying more base stations and micro and femto cells, increasing the degree of sectorisation and Coordinated Multipoint (CoMP). We are primarily interested in evaluating performance improvements introduced when uplink (UL) and downlink (DL) coordinated/cooperative multipoint (CoMP) is enabled in LTE Advanced Release 12 as a way of reducing interference among sites. The CoMP option of reducing interference does not require deployment of new equipment compared to the other options mentioned above hence network deployment costs are minimal. CoMP in theory is known to reduce interference especially for cell edge users and therefore improves network fairness. With CoMP, multiple points coordinate with each other such that transmission of signals to and from other points do not incur serious interference or the interference can even be exploited as a meaningful signal. In September 2011 work on specifications for CoMP support was started in 3GPP LTEAdvanced as one of the core features in LTE-Advanced Release 11 to improve cell edge user throughput as well as the average network throughput. We set to do field measurements in the evaluation of the effectiveness of CoMP in LTE. 3GPP LTE Release 12 was used and cell edge users' performance was the focus. The network operates in 2330 - 2350 MHz band (Channel 40). From the field measurements, it was demonstrated that the CoMP (Scenario 2) feature indeed effective in improving service quality/user experience/fairness for cell edge users. CoMP inherently improves network capacity. A seven (7) percent throughput was noticed

    Improving Frequency Reuse and Cochannel Interference Coordination in 4G HetNets

    Get PDF
    This report describes my M.A.Sc. thesis research work. The emerging 4th generation (4G) mobile systems and networks (so called 4G HetNets) are designed as multilayered cellular topology with a number of asymmetrically located, asymmetrically powered, self-organizing, and user-operated indoor small cell (e.g., pico/femto cells and WLANs) with a variety of cell architectures that are overlaid by a large cell (macro cell) with some or all interfering wireless links. These designs of 4G HetNets bring new challenges such as increased dynamics of user mobility and data traffic trespassing over the multi-layered cell boundaries. Traditional approaches of radio resource allocation and inter-cell (cochannel) interference management that are mostly centralized and static in the network core and are carried out pre-hand by the operator in 3G and lower cellular technologies, are liable to increased signaling overhead, latencies, complexities, and scalability issues and, thus, are not viable in case of 4G HetNets. In this thesis a comprehensive research study is carried out on improving the radio resource sharing and inter-cell interference management in 4G HetNets. The solution strategy exploits dynamic and adaptive channel allocation approaches such as dynamic and opportunistic spectrum access (DSA, OSA) techniques, through exploiting the spatiotemporal diversities among transmissions in orthogonal frequency division multiple access (OFDMA) based medium access in 4G HetNets. In this regards, a novel framework named as Hybrid Radio Resource Sharing (HRRS) is introduced. HRRS comprises of these two functional modules: Cognitive Radio Resource Sharing (CRRS) and Proactive Link Adaptation (PLA) scheme. A dynamic switching algorithm enables CRRS and PLA modules to adaptively invoke according to whether orthogonal channelization is to be carried out exploiting the interweave channel allocation (ICA) approach or non-orthogonal channelization is to be carried out exploiting the underlay channel allocation (UCA) approach respectively when relevant conditions regarding the traffic demand and radio resource availability are met. Benefits of CRRS scheme are identified through simulative analysis in comparison to the legacy cochannel and dedicated channel deployments of femto cells respectively. The case study and numerical analysis for PLA scheme is carried out to understand the dynamics of threshold interference ranges as function of transmit powers of MBS and FBS, relative ranges of radio entities, and QoS requirement of services with the value realization of PLA scheme.1 yea

    Dynamic Capacity Enhancement using a Smart Antenna in Mobile Telecommunications Networks

    Get PDF
    This work describes an investigation into the performance of antennas for mobile base station applications and techniques for improving the coverage and capacity within a base station cell. The work starts by tracing the development of mobile systems, both in technical and commercial terms, from the earliest analogue systems to present day broadband systems and includes anticipated future developments. This is followed by an outline of how smart antenna systems can be utilised to improve cell coverage and capacity. A novel smart antenna system incorporating an array of slant ± 450 dual- polarised stacked patch elements four columns wide excited by a novel multi-beam forming and beam shaping network has been designed, simulated and implemented. It is found that for an ideal smart antenna array, four narrow overlapping beams, one wide “broadcast channel” beam and right and left shaped beams can be provided. Results are presented for the simulation of the smart antenna system using CST EM simulation software which inherently includes mutual coupling and the effects of a truncated ground plane on the element patterns. The results show some significant changes to the desired set of coverage patterns and various mutual coupling compensation techniques have been reviewed. An improved design technique has been developed for compensating the performance degrading effects of mutual coupling and finite ground plane dimensions in microstrip antenna arrays. The improved technique utilises combination of two previously known techniques: complex excitation weights compensation by inversion of the array mutual coupling scattering matrix and the incorporation of a WAIM (wide angle impedance matching) sheet. The technique has been applied to a novel multi-beam smart antenna array to demonstrate the efficacy of the technique by electromagnetic simulation. In addition, a demonstrator array has been constructed and tested which has yielded a positive conformation of the simulation results. For the developed demonstrator array which provides seven different beams, beams “footprints” have been predicted both for free space propagation and for urban propagation to evaluate the dynamic capacity performance of the smart antenna in a 3G mobile network. The results indicate that sector capacity can be dynamically tailored to user demand profiles by selection of the appropriate beam patterns provided by the novel smart antenna system

    Optimization of Spectrum Management in Massive Array Antenna Systems with MIMO

    Get PDF
    Fifth generation (5G), is being considered as a revolutionary technology in the telecommunication domain whose the challenges are mainly to achieve signal quality and great ability to work with free spectrum in the millimetre waves. Besides, other important innovations are the introduction of a more current architecture and the use of multiple antennas in transmission and reception. Digital communication using multiple input and multiple output (MIMO) wireless links has recently emerged as one of the most significant technical advances in modern communications. MIMO technology is able to offer a large increase in the capacity of these systems, without requiring a considerable increase in bandwidth or power required for transmission. This dissertation presents an overview of theoretical concepts of MIMO systems. With such a system a spatial diversity gain can be obtained by using space-time codes, which simultaneously exploit the spatial domain and the time domain. SISO, SIMO and MISO systems are differentiated by their channel capacity and their configuration in relation to the number of antennas in the transmitter/receiver. To verify the effectiveness of the MIMO systems a comparison between the capacity of SISO and MIMO systems has been performed using the Shannon’s principles. In the MIMO system some variations in the number of antennas arrays have been considered, and the superiority of transmission gains of the MIMO systems have been demonstrated. Combined with millimetre waves (mmWaves) technology, massive MIMO systems, where the number of antennas in the base station and the number of users are large, is a promising solution. SDR implementations have been performed considering a platform with Matlab code applied to MIMO 2x2 Radio and Universal Software Peripheral Radio (USRP). A detailed study was initially conducted to analyze the architecture of the USRP. Complex structures of MIMO systems can be simplified by using mathematical methods implemented in Matlab for the synchronization of the USRP in the receiver side. SISO transmission and reception techniques have been considered to refine the synchronization (with 16-QAM), thus facilitating the future implementation of the MIMO system. OpenAirInterface has been considered for 4G and 5G implementations of actual mobile radio communication systems. Together with the practical MIMO, this type of solution is the starting point for future hardware building blocks involving massive MIMO systems.A quinta geração (5G) está sendo considerada uma tecnologia revolucionária no setor de telecomunicações, cujos desafios são principalmente a obtenção de qualidade de sinal e grande capacidade de trabalhar com espectro livre nas ondas milimétricas. Além disso, outras inovações importantes são a introdução de uma arquitetura mais atual e o uso de múltiplas antenas em transmissão e recepção. A comunicação digital usando ligaçõe sem fio de múltiplas entradas e múltiplas saídas (MIMO) emergiu recentemente como um dos avanços técnicos mais significativos nas comunicações modernas. A tecnologia MIMO é capaz de oferecer um elevado aumento na capacidade, sem exigir um aumento considerável na largura de banda ou potência transmitida. Esta dissertação apresenta uma visão geral dos conceitos teóricos dos sistemas MIMO. Com esses sistemas, um ganho de diversidade espacial pode ser obtido utilizando códigos espaço-tempo reais. Os sistemas SISO, SIMO e MISO são diferenciados pela capacidade de seus canais e a sua configuração em relação ao número de antenas no emissor/receptor. Para verificar a eficiência dos sistemas MIMO, realizou-se uma comparação entre a capacidade dos sistemas SISO e MIMO utilizado os princípios de Shannon. Nos sistemas MIMO condecideraram-se algumas variações no número de agregados de antenas, e a superioridade dos ganhos de transmissão dos sistemas MIMO foi demonstrada. Combinado com a tecnologia de ondas milimétricas (mmWaves), os sistemas massivos MIMO, onde o número de antenas na estação base e o número de usuários são grandes, são uma solução promissora. As implementações do SDR foram realizadas considerando uma plataforma com código Matlab aplicado aos rádios MIMO 2x2 e Universal Software Peripheral Radio (USRP). Um estudo detalhado foi inicialmente conduzido para analisar a arquitetura da USRP. Estruturas complexas de sistemas MIMO podem ser simplificadas usando métodos matemáticos implementados no Matlab para a sincronização do USRP no lado do receptor. Consideraram-se técnicas de transmissão e recepção SISO para refinar a sincronização (com 16-QAM), facilitando assim a implementação futura do sistema MIMO . Considerou-se o OpenAirInterface para implementações 4G e 5G de sistemas reais de comunicações móveis. Juntamente com o MIMO na pratica, este tipo de solução é o ponto de partida para futuros blocos de construção de hardware envolvendo sistemas MIMO massivos

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system
    corecore