23 research outputs found

    Novel Selective Mapping with Oppositional Hosted Cuckoo Optimization Algorithm for PAPR Reduction in 5G UFMC Systems

    Get PDF
    In recent times, there is a continuous requirement of achieving high data rates owing to an increase in the number of devices and significant demand for various services with maximum reliability and minimum delay. It results in the development of fifth generation (5G) to offer better services with enhanced data rate. Recently, a major alternative to OFDM technology for 5G networks called universal filtered multi-carrier (UFMC) is presented where every individual sub-band is filtered that reduces the OOB radiation and eliminates guard band. But high peak-to-average power ratio (PAPR) is a crucial issue which arises from the utilization of several subcarriers to generate the time domain transmission signal. For resolving this issue, this paper presents a novel selective mapping with oppositional hosted cuckoo optimization (SM-OHOCO) algorithm for PAPR reduction in 5G UFMC systems. In the SM-OHOCO algorithm, rather than the generation of several random phase sequences, SM-OHOCO algorithm is performed iteratively to attain a better solution with few searching rounds, showing the novelty of the work. As the optimization of phase sequence in the SLM technique is considered as an NP hard optimization problem, the OHOCO algorithm is applied, which is derived by incorporating the concepts of the HOCO algorithm with oppositional based learning (OBL) strategy. To validate the effective performance of the proposed SM-OHOCO algorithm, an extensive experimental analysis is performed to highlight the improved performance in 5G networks. The resultant values pointed out the superior outcome of the proposed SM-OHOCO algorithm over the other existing methods in terms of distinct measure

    Per Sub-band Tone Reservation scheme for Universal Filtered Multi-Carrier signal

    Get PDF
    Fifth generation (5G) applications like Internet of Things (IoT), Enhanced Mobile Broadband (eMBB), Cognitive Radios (CR), Vehicle to Vehicle (V2V) and Machine to Machine (M2M) communication put new demands on the network in terms of low latency, ultra-reliable communication and efficiency when transmitting very small bursts. One new contender that makes its appearance recently is the Universal Filtered MultiCarrier (UFMC). UFMC is a potential candidate to meet the requirements of 5G upcoming applications. This related waveform encounters the peak-to-average power ratio (PAPR) issue arising from the usage of multi-carrier transmission. In this investigation, two PAPR reduction techniques, called Per Subband Tone Reservation (PSTR) scheme to alleviate PAPR in UFMC systems are suggested. The first one is a pre-filtering PSTR scheme that uses the least squares approximation (LSA) algorithm to calculate the optimization factor(µ) and the second one is a post-filtering method. The concept of this proposal lies on the use of peaks reductions Tone to carry the correctional signal that reduces the high peaks of each sub-band individually. To shed light on UFMC as a potential waveform for 5G upcoming application, a comparison with OFDM modulation is done

    Subcarrier Filtering For Spectrally Efficient Multicarrier Modulation Schemes and Its Impact on PAPR: A Unified Approach

    Get PDF
    Multicarrier modulation (MCM) based schemes have been a major contributing factor in revolutionizing cellular networks due to their ability to overcome fading. One of the popular scheme orthogonal frequency division multiple access (OFDMA), having been part of 4G, is also adapted as part of 5G enhanced mobile broadband (eMBB).  Though it has several advantages, spectral efficiency (SE) and peak to average power ratio (PAPR) have been two major concerns which have attracted lot of attention resulting in proposals of several other MCM schemes.  But most of these studies have treated the two issues independently. This paper in particular studies the subcarrier filtering approach to improve the spectral efficiency of MCM scheme and its impact on the overall PAPR of such schemes. The analysis shows that the PAPR improvement is also achieved by such filters meant for spectral confinement and the simulation results validate the same provoking a unified research direction less explored till now

    Numerical Simulation and Design of Low PAPR FBMC Communication System for 5G Applications

    Get PDF
    Unlike SC-FDMA (Single-Carrier Frequency Division Multiple Access), merging only DFT (Discrete Fourier Transform) addition with FBMC-OQAM (filter group multi-carrier with offset quadrature amplitude modulation) only cuts the marginal PAPR. (Peak-to-average power ratio). To take advantage of the single carrier effect of DFT extension, special conditions for the coefficients of the IQ (in-phase and quadrature phase) channels of every single subcarrier ought to be met. As a beginning point, we first originate this form, which we call the ITSM (Identical Time-Shifted Multi-Carrier) condition. Then, depending on this condition, we put forward a new FBMC for low PAPR. The foremost features of the offered way out are summarized as: First, to additionally raise the PAPR reduction, we created four candidate versions of the FBMC waveform for DFT spreading out and ITSM conditions and carefully chosen one with the least peak power. Even with various candidate generations, unlike the traditional SI (Side information) based PAPR reduction scheme, the focal computational fragments (such as DFT and IDFT) are shared and need only be executed one time. Therefore, matched to the prior DFT-expanded FBMC, the overhead in complexity is small, and the recommended pattern can realize a PAPR reduction comparable to SC-FDMA. Second, in the projected pattern each one pass on only two bits of SI from a block of FBMC-OQAM symbols. And so, the SI overhead is meaningfully lesser than a conventional SI-based scheme such as SLM (Selective Mapping) or PTS (Partial Transmission Sequence).The whole work is executed using MATLAB software. The PAPR of FBMC system has been significantly reduced after the application of proposed algorithm. PAPR was reduced by 25 % after the use of DFT spreading and ITSM conditioning

    A Novel PAPR Reduction in Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (OQAM) Based VLC Systems

    Get PDF
    The peak to average power ratio (PAPR) is one of the major problem with multicarrier-based systems. Due to its improved spectral efficiency and decreased PAPR, Filter Bank Multicarrier (FBMC) has recently become an effective alternative to the orthogonal multiplexing division (OFDM). For filter bank multicarrier communication/offset quadrature amplitude modulation-Visible light communication (FBMC/OQAM-VLC) systems is proposed a PAPR reduction technique. The suggested approach overlaps the proposed FBMC/OQAM-based VLC data signal with the existing signals. Non-redundant signals and data signals do not overlap in the frequency domain because data signals are scattered on odd subcarriers whereas built signals use even subcarriers. To reduce the effects of large-amplitude signal reduction, the suggested technique converts negative signals into positive signals rather than clipping them off as in conventional FBMC-based VLC systems. The PAPR reduction and bit error rate (BER) are realized using a scaling factor in the transformed signals. Complementary cumulative distribution function(CCDF) and BER are used to calculate the performance of the proposed approach. The presented study found that FBMC/OQAM-VLC systems to achieve a good trade-off between PAPR reduction and BER

    A Hybrid Segmentation Pattern of Partial Transmission in Computer Networks to Reduce the Complexity Level

    Get PDF
    Partial transmission sequence (PTS) is seen as a related project in the framework of the Orthogonal Frequency Division ‎Multiplexing (OFDM) to suppress the medium to high Peak-to-Average Power Ratio problem. The PTS chart data is based on dividing the back into subdivisions and their weight by combining step-by-step factors. Despite the fact that PTS can reduce the high specifications. The Computational Complexity Level (CC) limits the scope of application to match PTS use with ground applications. In PTS, there are three main distribution schemes. Interleaving projects (IL-PTS), arbitrary and alternate (PR-PTS) and Ad-PTS. In this paper, another algorithm called the Hybrid Pseudo-Random and Interleaving Cosine Wave Shape ‎‎(H-PRC-PTS) is presented and the PR-PTS equilibrium is established by stabilizing the cousin waveform between languages (S-IL-C- PTS), which was suggested in the previous work. The results showed that the proposed algorithm could reduce the validity of PAPR as a PR-PTS scheme, although the CC level was significantly reduced

    PAPR reduction in CP-OFDM (5G) using hybrid technique

    Get PDF
    The Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) is a 5G multicarrier waveform that offers great data speeds and improvements in spectrum utilisation. The primary CP-OFDM’s weakness is its excessive peak-to-average power ratio (PAPR), which is a characteristic of all multicarrier modulation techniques. We study the application of a hybrid technique approach how to lower the peak to average power ratio (PAPR) in a CP-OFDM system. We also evaluated the outcomes of peak to average power ratio (PAPR) decrease in CP-OFDM, utilising a hybrid technique with Group Codeword Shift (GCS), Median Codeword Shift, Selective Codeword Shift (SCS), and Conventional CP-OFDM. When compared to the non-hybrid technique, the simulation results indicate that the hybrid approach is superior in reducing the peak PAPR by more than 65 percent

    Investigations on Filtered OFDM with Selective Mapping Method and Partial Transmit Sequence Technique for Future Generation Mobile Communication Systems

    Get PDF
    Future generation mobile communication system requires asynchronous transmission of data, reduced out-of-band power emission, low peak-to-average power ratio, low latency, high data transmission rate, better spectrum, energy, and power efficiency, etc. Investigations on suitable waveform candidates for future-generation mobile communication have been reported in this paper. Filtered Orthogonal Frequency Division Multiplexing (F- OFDM), F- OFDM with Selective Mapping Method (SLM), and F- OFDM with Partial Transmit Sequence (PTS) technique, have been investigated. Its performances have been evaluated in terms of peak-to-average power ratio (PAPR), bit error rate (BER), and out-of-band power emissions. F–OFDM is a suitable candidate for future-generation mobile communication systems that can be used with single-rate or multirate filters. It can also be used in combination with other PAPR reduction techniques. F-OFDM with PTS technique requires a smaller number of IFFT operations than F-OFDM with SLM. The result obtained from my present investigations reveals that F-OFDM with the PTS technique has 4.3 dB less PAPR than that of OFDM at the cost of marginal increase in the BER value

    A Novel PTS Scheme for PAPR Reduction of Filtered-OFDM Signals without Side Information

    Get PDF
    In this paper, a novel partial transmit sequence (PTS) scheme is proposed for reducing the peak-to-average power ratio (PAPR) of filtered orthogonal frequency division multiplexing (f-OFDM) systems. The PTS method is modified such that no side information (SI) transmission is needed. The data and pilot recovery are accomplished by a simple detector, making use of the correlation property of the Hadamard sequence and the transparency property of the pilot signal and an iterative phase detection is further added in a fading channel. Simulation results show that the modified solution provides a higher correct detection probability without increasing the system complexity nor affecting the PAPR suppression performance
    corecore