3 research outputs found

    Low-complexity LSMR equalisation of FrFT-based multicarrier systems in doubly dispersive channels

    Get PDF
    The discrete fractional Fourier transform (FrFT) has been suggested to enhance performance over DFT-based multicarrier systems when transmitting over doubly-dispersive channels. In this paper, we propose a novel low-complexity equaliser for inter-symbol and inter-carrier interference arising in such multicarrier transmission system. Due to a lower spreading in the FrFT-domain compared to the DFTchannel matrix as compared to the DFT domain, the equaliser cam approximate the fractional-domain channel matrix by a band matrix. Further, we utilise the least squares minres (LSMR) algorithm in the calculation of the equalisation, which exhibits attractive numerical properties and low complexity. Simulation results demonstrate the superior performance of the proposed LSMR equaliser over benchmark schemes

    Chirp-based multicarrier modulation

    Get PDF
    In this paper we demonstrate that in doubly-dispersive environments, a multicarrier (MC) system based on a fractional Fourier transform (FrFT) can achieve a better concentration of power near the main diagonal of the equivalent channel matrix compared to standard orthogonal frequency division multiplexing (OFDM). The resulting inter-symbol and inter-carrier interference in such a chirp- based MC system can therefore be suppressed with a reduced complexity equaliser. Simulations show that compared to an equalised OFDM system, the equalised FrFT-MC approach can either significantly reduce complexity or enhance performance in a time-varying environment

    A low-complexity equalizer for video broadcasting in cyber-physical social systems through handheld mobile devices

    Get PDF
    In Digital Video Broadcasting-Handheld (DVB-H) devices for cyber-physical social systems, the Discrete Fractional Fourier Transform-Orthogonal Chirp Division Multiplexing (DFrFT-OCDM) has been suggested to enhance the performance over Orthogonal Frequency Division Multiplexing (OFDM) systems under time and frequency-selective fading channels. In this case, the need for equalizers like the Minimum Mean Square Error (MMSE) and Zero-Forcing (ZF) arises, though it is excessively complex due to the need for a matrix inversion, especially for DVB-H extensive symbol lengths. In this work, a low complexity equalizer, Least-Squares Minimal Residual (LSMR) algorithm, is used to solve the matrix inversion iteratively. The paper proposes the LSMR algorithm for linear and nonlinear equalizers with the simulation results, which indicate that the proposed equalizer has significant performance and reduced complexity over the classical MMSE equalizer and other low complexity equalizers, in time and frequency-selective fading channels. © 2013 IEEE
    corecore