6,997 research outputs found

    DenseShift: Towards Accurate and Efficient Low-Bit Power-of-Two Quantization

    Full text link
    Efficiently deploying deep neural networks on low-resource edge devices is challenging due to their ever-increasing resource requirements. To address this issue, researchers have proposed multiplication-free neural networks, such as Power-of-Two quantization, or also known as Shift networks, which aim to reduce memory usage and simplify computation. However, existing low-bit Shift networks are not as accurate as their full-precision counterparts, typically suffering from limited weight range encoding schemes and quantization loss. In this paper, we propose the DenseShift network, which significantly improves the accuracy of Shift networks, achieving competitive performance to full-precision networks for vision and speech applications. In addition, we introduce a method to deploy an efficient DenseShift network using non-quantized floating-point activations, while obtaining 1.6X speed-up over existing methods. To achieve this, we demonstrate that zero-weight values in low-bit Shift networks do not contribute to model capacity and negatively impact inference computation. To address this issue, we propose a zero-free shifting mechanism that simplifies inference and increases model capacity. We further propose a sign-scale decomposition design to enhance training efficiency and a low-variance random initialization strategy to improve the model's transfer learning performance. Our extensive experiments on various computer vision and speech tasks demonstrate that DenseShift outperforms existing low-bit multiplication-free networks and achieves competitive performance compared to full-precision networks. Furthermore, our proposed approach exhibits strong transfer learning performance without a drop in accuracy. Our code was released on GitHub

    PalQuant: Accelerating High-precision Networks on Low-precision Accelerators

    Full text link
    Recently low-precision deep learning accelerators (DLAs) have become popular due to their advantages in chip area and energy consumption, yet the low-precision quantized models on these DLAs bring in severe accuracy degradation. One way to achieve both high accuracy and efficient inference is to deploy high-precision neural networks on low-precision DLAs, which is rarely studied. In this paper, we propose the PArallel Low-precision Quantization (PalQuant) method that approximates high-precision computations via learning parallel low-precision representations from scratch. In addition, we present a novel cyclic shuffle module to boost the cross-group information communication between parallel low-precision groups. Extensive experiments demonstrate that PalQuant has superior performance to state-of-the-art quantization methods in both accuracy and inference speed, e.g., for ResNet-18 network quantization, PalQuant can obtain 0.52\% higher accuracy and 1.78×\times speedup simultaneously over their 4-bit counter-part on a state-of-the-art 2-bit accelerator. Code is available at \url{https://github.com/huqinghao/PalQuant}.Comment: accepted by ECCV202

    CoNLoCNN: Exploiting Correlation and Non-Uniform Quantization for Energy-Efficient Low-precision Deep Convolutional Neural Networks

    Get PDF
    In today's era of smart cyber-physical systems, Deep Neural Networks (DNNs) have become ubiquitous due to their state-of-the-art performance in complex real-world applications. The high computational complexity of these networks, which translates to increased energy consumption, is the foremost obstacle towards deploying large DNNs in resource-constrained systems. Fixed-Point (FP) implementations achieved through post-training quantization are commonly used to curtail the energy consumption of these networks. However, the uniform quantization intervals in FP restrict the bit-width of data structures to large values due to the need to represent most of the numbers with sufficient resolution and avoid high quantization errors. In this paper, we leverage the key insight that (in most of the scenarios) DNN weights and activations are mostly concentrated near zero and only a few of them have large magnitudes. We propose CoNLoCNN, a framework to enable energy-efficient low-precision deep convolutional neural network inference by exploiting: (1) non-uniform quantization of weights enabling simplification of complex multiplication operations; and (2) correlation between activation values enabling partial compensation of quantization errors at low cost without any run-time overheads. To significantly benefit from non-uniform quantization, we also propose a novel data representation format, Encoded Low-Precision Binary Signed Digit, to compress the bit-width of weights while ensuring direct use of the encoded weight for processing using a novel multiply-and-accumulate (MAC) unit design
    • …
    corecore