461 research outputs found

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    Doubly Massive mmWave MIMO Systems: Using Very Large Antenna Arrays at Both Transmitter and Receiver

    Get PDF
    One of the key features of next generation wireless communication systems will be the use of frequencies in the range 10-100GHz (aka mmWave band) in densely populated indoor and outdoor scenarios. Due to the reduced wavelength, antenna arrays with a large number of antennas can be packed in very small volumes, making thus it possible to consider, at least in principle, communication links wherein not only the base-station, but also the user device, are equipped with very large antenna arrays. We denote this configuration as a "doubly-massive" MIMO wireless link. This paper introduces the concept of doubly massive MIMO systems at mmWave, showing that at mmWave the fundamentals of the massive MIMO regime are completely different from what happens at conventional sub-6 GHz cellular frequencies. It is shown for instance that the multiplexing capabilities of the channel and its rank are no longer ruled by the number of transmit and receive antennas, but rather by the number of scattering clusters in the surrounding environment. The implications of the doubly massive MIMO regime on the transceiver processing, on the system energy efficiency and on the system throughput are also discussed.Comment: Accepted for presentation at 2016 IEEE GLOBECOM, Washington (DC), USA, December 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Codebook Based Hybrid Precoding for Millimeter Wave Multiuser Systems

    Get PDF
    In millimeter wave (mmWave) systems, antenna architecture limitations make it difficult to apply conventional fully digital precoding techniques but call for low cost analog radio-frequency (RF) and digital baseband hybrid precoding methods. This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multi-antenna mmWave systems with a limited number of RF chains. Two performance measures, maximizing the spectral efficiency and the energy efficiency of the system, are considered. We propose a codebook based RF precoding design and obtain the channel state information via a beam sweep procedure. Via the codebook based design, the original system is transformed into a virtual multiuser downlink system with the RF chain constraint. Consequently, we are able to simplify the complicated hybrid precoding optimization problems to joint codeword selection and precoder design (JWSPD) problems. Then, we propose efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures. Finally, extensive numerical results are provided to validate the effectiveness of the proposed hybrid precoders.Comment: 35 pages, 9 figures, to appear in Trans. on Signal Process, 201
    corecore