994 research outputs found

    Mengenal pasti tahap pengetahuan pelajar tahun akhir Ijazah Sarjana Muda Kejuruteraan di KUiTTHO dalam bidang keusahawanan dari aspek pengurusan modal

    Get PDF
    Malaysia ialah sebuah negara membangun di dunia. Dalam proses pembangunan ini, hasrat negara untuk melahirkan bakal usahawan beijaya tidak boleh dipandang ringan. Oleh itu, pengetahuan dalam bidang keusahawanan perlu diberi perhatian dengan sewajarnya; antara aspek utama dalam keusahawanan ialah modal. Pengurusan modal yang tidak cekap menjadi punca utama kegagalan usahawan. Menyedari hakikat ini, kajian berkaitan Pengurusan Modal dijalankan ke atas 100 orang pelajar Tahun Akhir Kejuruteraan di KUiTTHO. Sampel ini dipilih kerana pelajar-pelajar ini akan menempuhi alam pekeijaan di mana mereka boleh memilih keusahawanan sebagai satu keijaya. Walau pun mereka bukanlah pelajar dari jurusan perniagaan, namun mereka mempunyai kemahiran dalam mereka cipta produk yang boleh dikomersialkan. Hasil dapatan kajian membuktikan bahawa pelajar-pelajar ini berminat dalam bidang keusahawanan namun masih kurang pengetahuan tentang pengurusan modal terutamanya dalam menentukan modal permulaan, pengurusan modal keija dan caracara menentukan pembiayaan kewangan menggunakan kaedah jualan harian. Oleh itu, satu garis panduan Pengurusan Modal dibina untuk memberi pendedahan kepada mereka

    Data hiding in multimedia - theory and applications

    Get PDF
    Multimedia data hiding or steganography is a means of communication using subliminal channels. The resource for the subliminal communication scheme is the distortion of the original content that can be tolerated. This thesis addresses two main issues of steganographic communication schemes: 1. How does one maximize the distortion introduced without affecting fidelity of the content? 2. How does one efficiently utilize the resource (the distortion introduced) for communicating as many bits of information as possible? In other words, what is a good signaling strategy for the subliminal communication scheme? Close to optimal solutions for both issues are analyzed. Many techniques for the issue for maximizing the resource, viz, the distortion introduced imperceptibly in images and video frames, are proposed. Different signaling strategies for steganographic communication are explored, and a novel signaling technique employing a floating signal constellation is proposed. Algorithms for optimal choices of the parameters of the signaling technique are presented. Other application specific issues like the type of robustness needed are taken into consideration along with the established theoretical background to design optimal data hiding schemes. In particular, two very important applications of data hiding are addressed - data hiding for multimedia content delivery, and data hiding for watermarking (for proving ownership). A robust watermarking protocol for unambiguous resolution of ownership is proposed

    Texture classification using transform analysis

    Get PDF
    The work presented in this thesis deals with the application of spectral methods for texture classification. The aim of the present work is to introduce a hybrid methodology for texture classification based on a spatial domain global pre-classifier together with a spectral classifier that utilizes multiresolution transform analysis. The reason for developing a spatial pre-classifier is that many discriminating features of textures are present in the spatial domain of the texture. Of these, global features such as intensity histograms and entropies can still add significant information to the texture classification process. The pre-classifier uses texture intensity histograms to derive histogram moments that serve as global features. A spectral classifier that uses Hartley transform follows the pre-classifier. The choice of such transform was due to the fact that the Fast Hartley Transform has many advantages over the other transforms since it results in real valued arrays and requires less memory space and computational complexity. To test the performance of the whole classifier, 900 texture images were generated using mathematical texture generating functions. The images generated were of three different classes and each class is sub-classified into three sub-classes. Half of the generated samples was used to build the classifier, while the other half was used to test it. The pre-classifier was designed to identify texture classes using an Euclidean distance matching for 4 statistical moments of the intensity histograms. The pre-classifier matching accuracy is found to be 99.89%. The spectral classifier is designed on the basis of the Hartley transform to determine the image sub-class. Initially, a full resolution Hartley transform was used to obtain two orthogonal power spectral vectors. Peaks in these two vectors were detected after applying a 10% threshold and the highest 4 peaks for each image are selected and saved in position lookup tables. The matching accuracy obtained using the two classification phases (pre-classifier and spectral classifier) is 99.56%. The accuracy achieved for the single resolution classifier is high but that was achieved on the expense of space for the lookup tables. In order to investigate the effect of lowering the resolution on the size of the information needed for matching the textures, we have applied a multiresolution technique to the Hartley Transform in a restricted way by computing the Hartley spectra in decreasing resolution. In particular, a one-step resolution decrease achieves 99% matching efficiency while saving memory space by 40%. This is a minor sacrifice of less than 1% in the matching efficiency with a considerable decrease in the complexity of the present methodology

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Differentially private publication of database streams via hybrid video coding

    Get PDF
    While most anonymization technology available today is designed for static and small data, the current picture is of massive volumes of dynamic data arriving at unprecedented velocities. From the standpoint of anonymization, the most challenging type of dynamic data is data streams. However, while the majority of proposals deal with publishing either count-based or aggregated statistics about the underlying stream, little attention has been paid to the problem of continuously publishing the stream itself with differential privacy guarantees. In this work, we propose an anonymization method that can publish multiple numerical-attribute, finite microdata streams with high protection as well as high utility, the latter aspect measured as data distortion, delay and record reordering. Our method, which relies on the well-known differential pulse-code modulation scheme, adapts techniques originally intended for hybrid video encoding, to favor and leverage dependencies among the blocks of the original stream and thereby reduce data distortion. The proposed solution is assessed experimentally on two of the largest data sets in the scientific community working in data anonymization. Our extensive empirical evaluation shows the trade-off among privacy protection, data distortion, delay and record reordering, and demonstrates the suitability of adapting video-compression techniques to anonymize database streams

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Efficient VLSI Architectures for Image Compression Algorithms

    Get PDF
    An image, in its original form, contains huge amount of data which demands not only large amount of memory requirements for its storage but also causes inconvenient transmission over limited bandwidth channel. Image compression reduces the data from the image in either lossless or lossy way. While lossless image compression retrieves the original image data completely, it provides very low compression. Lossy compression techniques compress the image data in variable amount depending on the quality of image required for its use in particular application area. It is performed in steps such as image transformation, quantization and entropy coding. JPEG is one of the most used image compression standard which uses discrete cosine transform (DCT) to transform the image from spatial to frequency domain. An image contains low visual information in its high frequencies for which heavy quantization can be done in order to reduce the size in the transformed representation. Entropy coding follows to further reduce the redundancy in the transformed and quantized image data. Real-time data processing requires high speed which makes dedicated hardware implementation most preferred choice. The hardware of a system is favored by its lowcost and low-power implementation. These two factors are also the most important requirements for the portable devices running on battery such as digital camera. Image transform requires very high computations and complete image compression system is realized through various intermediate steps between transform and final bit-streams. Intermediate stages require memory to store intermediate results. The cost and power of the design can be reduced both in efficient implementation of transforms and reduction/removal of intermediate stages by employing different techniques. The proposed research work is focused on the efficient hardware implementation of transform based image compression algorithms by optimizing the architecture of the system. Distribute arithmetic (DA) is an efficient approach to implement digital signal processing algorithms. DA is realized by two different ways, one through storage of precomputed values in ROMs and another without ROM requirements. ROM free DA is more efficient. For the image transform, architectures of one dimensional discrete Hartley transform (1-D DHT) and one dimensional DCT (1-D DCT) have been optimized using ROM free DA technique. Further, 2-D separable DHT (SDHT) and 2-D DCT architectures have been implemented in row-column approach using two 1-D DHT and two 1-D DCT respectively. A finite state machine (FSM) based architecture from DCT to quantization has been proposed using the modified quantization matrix in JPEG image compression which requires no memory in storage of quantization table and DCT coefficients. In addition, quantization is realized without use of multipliers that require more area and are power hungry. For the entropy encoding, Huffman coding is hardware efficient than arithmetic coding. The use of Huffman code table further simplifies the implementation. The strategies have been used for the significant reduction of memory bits in storage of Huffman code table and the complete Huffman coding architecture encodes the transformed coefficients one bit per clock cycle. Direct implementation algorithm of DCT has the advantage that it is free of transposition memory to store intermediate 1-D DCT. Although recursive algorithms have been a preferred method, these algorithms have low accuracy resulting in image quality degradation. A non-recursive equation for the direct computation of DCT coefficients have been proposed and implemented in both 0.18 µm ASIC library as well as FPGA. It can compute DCT coefficients in any order and all intermediate computations are free of fractions and hence very high image quality has been obtained in terms of PSNR. In addition, one multiplier and one register bit-width need to be changed for increasing the accuracy resulting in very low hardware overhead. The architecture implementation has been done to obtain zig-zag ordered DCT coefficients. The comparison results show that this implementation has less area in terms of gate counts and less power consumption than the existing DCT implementations. Using this architecture, the complete JPEG image compression system has been implemented which has Huffman coding module, one multiplier and one register as the only additional modules. The intermediate stages (DCT to Huffman encoding) are free of memory, hence efficient architecture is obtained

    Mean Field Approximations and Multipartite Thermal Correlations

    Full text link
    The relationship between the mean-field approximations in various interacting models of statistical physics and measures of classical and quantum correlations is explored. We present a method that allows us to bound the total amount of correlations (and hence entanglement) in a physical system in thermal equilibrium at some temperature in terms of its free energy and internal energy. This method is first illustrated using two qubits interacting through the Heisenberg coupling, where entanglement and correlations can be computed exactly. It is then applied to the one dimensional Ising model in a transverse magnetic field, for which entanglement and correlations cannot be obtained by exact methods. We analyze the behavior of correlations in various regimes and identify critical regions, comparing them with already known results. Finally, we present a general discussion of the effects of entanglement on the macroscopic, thermodynamical features of solid-state systems. In particular, we exploit the fact that a dd dimensional quantum system in thermal equilibrium can be made to corresponds to a d+1 classical system in equilibrium to substitute all entanglement for classical correlations.Comment: 17 pages, 6 figure
    corecore