1,048 research outputs found

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Circuit designs for low-power and SEU-hardened systems

    Get PDF
    The desire to have smaller and faster portable devices is one of the primary motivations for technology scaling. Though advancements in device physics are moving at a very good pace, they might not be aggressive enough for now-a-day technology scaling trends. As a result, the MOS devices used for present day integrated circuits are pushed to the limit in terms of performance, power consumption and robustness, which are the most critical criteria for almost all applications. Secondly, technology advancements have led to design of complex chips with increasing chip densities and higher operating speeds. The design of such high performance complex chips (microprocessors, digital signal processors, etc) has massively increased the power dissipation and, as a result, the operating temperatures of these integrated circuits. In addition, due to the aggressive technology scaling the heat withstanding capabilities of the circuits is reducing, thereby increasing the cost of packaging and heat sink units. This led to the increase in prominence for smarter and more robust low-power circuit and system designs. Apart from power consumption, another criterion affected by technology scaling is robustness of the design, particularly for critical applications (security, medical, finance, etc). Thus, the need for error free or error immune designs. Until recently, radiation effects were a major concern in space applications only. With technology scaling reaching nanometer level, terrestrial radiation has become a growing concern. As a result Single Event Upsets (SEUs) have become a major challenge to robust designs. Single event upset is a temporary change in the state of a device due to a particle strike (usually from the radiation belts or from cosmic rays) which may manifest as an error at the output. This thesis proposes a novel method for adaptive digital designs to efficiently work with the lowest possible power consumption. This new technique improves options in performance, robustness and power. The thesis also proposes a new dual data rate flipflop, which reduces the necessary clock speed by half, drastically reducing the power consumption. This new dual data rate flip-flop design culminates in a proposed unique radiation hardened dual data rate flip-flop, Firebird\u27. Firebird offers a valuable addition to the future circuit designs, especially with the increasing importance of the Single Event Upsets (SEUs) and power dissipation with technology scaling.\u2

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF
    • …
    corecore