15 research outputs found

    From Connectivity to Advanced Internet Services: A Comprehensive Review of Small Satellites Communications and Networks

    Get PDF
    Recently the availability of innovative and affordable COTS (Commercial Off The Shelf) technological solutions and the ever improving results of microelectronics and microsystems technologies have enabled the design of ever smaller yet ever more powerful satellites. The emergence of very capable small satellites heralds an era of new opportunities in the commercial space market. Initially applied only to scientific missions, earth observation and remote sensing, small satellites are now being deployed to support telecommunications services. This review paper examines the operational features of small satellites that contribute to their success. An overview of recent advances and development trends in the field of small satellites is provided, with a special focus on telecommunication aspects such as the use of higher frequency bands, optical communications, new protocols, and advanced architectures

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Communication Subsystems for Satellite Design

    Get PDF
    The objective of this chapter is to provide a comprehensive end-to-end overview of existing communication subsystems residing on both the satellite bus and payloads. These subsystems include command and mission data handling, telemetry and tracking, and the antenna payloads for both command, telemetry and mission data. The function of each subsystem and the relationships to the others will be described in detail. In addition, the recent application of software defined radio (SDR) to advanced satellite communication system design will be looked at with applications to satellite development, and the impacts on how SDR will affect future satellite missions are briefly discussed

    Identifying Retrofitting Opportunities for Federated Satellite Systems

    Get PDF
    This paper aims at identifying retrofitting possibilities to incorporate existing spacecraft into a network of federated satellite systems. The paper presents a systematic review of possible retrofitting options, such as direct modifications including replacement and addition of interfaces, and indirect modifications through the addition of intermediary federated negotiators. The paper considers existing frequency regulations for the analysis in the technical domain, but does not take into consideration how complex or time-consuming any legislative changes might be. Although the paper concludes that direct modifications of existing satellites are nonfeasible from a technical point of view, it identifies a possible scenario of retrofitting by adding intermediary negotiator satellites. The link budget for the intersatellite link between an existing satellite mission, such as SPOT-6, and a conceptual satellite negotiator was estimated. The work concludes that from a link budget point of view and existing technology, such a configuration can provide a slant range from several hundred to thousands of kilometers. The work defines models for trade-off analysis identifying correlations between satellite negotiator parameters and the number of covered satellites. The paper concludes proposing several possible satellite negotiator architectures and high-level technical requirements based on analysis of characteristics of existing and planned satellites

    BRAINSTACK – A Platform for Artificial Intelligence & Machine Learning Collaborative Experiments on a Nano-Satellite

    Get PDF
    Space missions have become more ambitious with exploration targets growing ever distant while simultaneously requiring larger guidance and communication budgets. These conflicting desires of distance and control drive the need for in-situ intelligent decision making to reduce communication and control limitations. While ground based research on Artificial Intelligence and Machine Learning (AI/ML) software modules has grown exponentially, the capacity to experimentally validate such software modules in space in a rapid and inexpensive format has not. To this end, the Nano Orbital Workshop (NOW) group at NASA Ames Research Center is performing flight evaluation tests of ‘commercially’ available bleeding-edge computational platforms via what is programmatically referred to as the BrainStack on the TechEdSat (TES-n) flight series. Processors selected as part of the BrainStack are of ideal size, packaging, and power consumption for easy integration into a cube satellite structure. These experiments have included the evaluation of small, high-performance GPUs and, more recently, neuromorphic processors in LEO operations. Additionally, it is planned to measure the radiation environment these processors experience to understand any degradation or computational artifacts caused by long term space radiation exposure on these novel architectures. This evolving flexible and collaborative environment involving various research teams across NASA and other organizations is intended to be a convenient orbital test platform from which many anticipated future space automation applications may be initially tested

    Power Budgets for CubeSat Radios to Support Ground Communications and Inter-Satellite Links

    Get PDF
    CubeSats are a class of pico-satellites that have emerged over the past decade as a cost-effective alternative to the traditional large satellites to provide space experimentation capabilities to universities and other types of small enterprises, which otherwise would be unable to carry them out due to cost constraints. An important consideration when planning CubeSat missions is the power budget required by the radio communication subsystem, which enables a CubeSat to exchange information with ground stations and/or other CubeSats in orbit. The power that a CubeSat can dedicate to the communication subsystem is limited by the hard constraints on the total power available, which are due to its small size and light weight that limit the dimensions of the CubeSat power supply elements (batteries and solar panels). To date, no formal studies of the communications power budget for CubeSats are available in the literature, and this paper presents a detailed power budget analysis that includes communications with ground stations as well as with other CubeSats. For ground station communications we outline how the orbital parameters of the CubeSat trajectory determine the distance of the ground station link and present power budgets for both uplink and downlink that include achievable data rates and link margins. For inter-satellite communications we study how the slant range determines power requirements and affects the achievable data rates and link margins

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version

    Architectures and Synchronization Techniques for Distributed Satellite Systems: A Survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field

    Communications subsystem hardware and software development for the ESTCube-2 nanosatellite

    Get PDF
    One of the most crucial components of satellites is their communications subsystem. Without a functioning radio link, it would be challenging to receive telemetry and payload data from the satellite and send telecommands to it from the ground. ESTCube-2 is a 3U CubeSat from the Estonian Student Satellite Foundation that is expectedto launch in 2022. The mission of ESTCube-2 is to test various payloads inLEO. The primary payload being the plasma brake, similar to the Electric Solar Wind Sail (E-Sail) experiment on ESTCube-1. Due to the critical nature of the satellite communications system, it is essential to start with thorough testing early to reach high reliability by the launch. The goals for this master thesis are to test ESTCube-2 communications subsystem hardware and software, and to create an engineering model, to resolve any issues discovered
    corecore