6,117 research outputs found

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework

    Get PDF
    According to the thin client computing principle, the user interface is physically separated from the application logic. In practice only a viewer component is executed on the client device, rendering the display updates received from the distant application server and capturing the user interaction. Existing remote display frameworks are not optimized to encode the complex scenes of modern applications, which are composed of objects with very diverse graphical characteristics. In order to tackle this challenge, we propose to transfer to the client, in addition to the binary encoded objects, semantic information about the characteristics of each object. Through this semantic knowledge, the client is enabled to react autonomously on user input and does not have to wait for the display update from the server. Resulting in a reduction of the interaction latency and a mitigation of the bursty remote display traffic pattern, the presented framework is of particular interest in a wireless context, where the bandwidth is limited and expensive. In this paper, we describe a generic architecture of a semantic remote display framework. Furthermore, we have developed a prototype using the MPEG-4 Binary Format for Scenes to convey the semantic information to the client. We experimentally compare the bandwidth consumption of MPEG-4 BiFS with existing, non-semantic, remote display frameworks. In a text editing scenario, we realize an average reduction of 23% of the data peaks that are observed in remote display protocol traffic

    Green compressive sampling reconstruction in IoT networks

    Get PDF
    In this paper, we address the problem of green Compressed Sensing (CS) reconstruction within Internet of Things (IoT) networks, both in terms of computing architecture and reconstruction algorithms. The approach is novel since, unlike most of the literature dealing with energy efficient gathering of the CS measurements, we focus on the energy efficiency of the signal reconstruction stage given the CS measurements. As a first novel contribution, we present an analysis of the energy consumption within the IoT network under two computing architectures. In the first one, reconstruction takes place within the IoT network and the reconstructed data are encoded and transmitted out of the IoT network; in the second one, all the CS measurements are forwarded to off-network devices for reconstruction and storage, i.e., reconstruction is off-loaded. Our analysis shows that the two architectures significantly differ in terms of consumed energy, and it outlines a theoretically motivated criterion to select a green CS reconstruction computing architecture. Specifically, we present a suitable decision function to determine which architecture outperforms the other in terms of energy efficiency. The presented decision function depends on a few IoT network features, such as the network size, the sink connectivity, and other systems’ parameters. As a second novel contribution, we show how to overcome classical performance comparison of different CS reconstruction algorithms usually carried out w.r.t. the achieved accuracy. Specifically, we consider the consumed energy and analyze the energy vs. accuracy trade-off. The herein presented approach, jointly considering signal processing and IoT network issues, is a relevant contribution for designing green compressive sampling architectures in IoT networks

    Performance evaluation of transcoding algorithms for H.264

    Get PDF
    • 

    corecore