507 research outputs found

    Cost-Effective and Energy-Efficient Techniques for Underwater Acoustic Communication Modems

    Get PDF
    Finally, the modem developed has been tested experimentally in laboratory (aquatic environment) showing that can communicates at different data rates (100..1200 bps) compared to state-of-the-art research modems. The software used include LabVIEW, MATLAB, Simulink, and Multisim (to test the electronic circuit built) has been employed.Underwater wireless sensor networks (UWSNs) are widely used in many applications related to ecosystem monitoring, and many more fields. Due to the absorption of electromagnetic waves in water and line-of-sight communication of optical waves, acoustic waves are the most suitable medium of communication in underwater environments. Underwater acoustic modem (UAM) is responsible for the transmission and reception of acoustic signals in an aquatic channel. Commercial modems may communicate at longer distances with reliability, but they are expensive and less power efficient. Research modems are designed by using a digital-signal-processor (DSP is expensive) and field-programmable-gate-array (FPGA is high power consuming device). In addition to, the use of a microcontroller is also a common practice (which is less expensive) but provides limited computational power. Hence, there is a need for a cost-effective and energy-efficient UAM to be used in budget limited applications. In this thesis different objectives are proposed. First, to identify the limitations of state-of-the-art commercial and research UAMs through a comprehensive survey. The second contribution has been the design of a low-cost acoustic modem for short-range underwater communications by using a single board computer (Raspberry-Pi), and a microcontroller (Atmega328P). The modulator, demodulator and amplifiers are designed with discrete components to reduce the overall cost. The third contribution is to design a web based underwater acoustic communication testbed along with a simulation platform (with underwater channel and sound propagation models), for testing modems. The fourth contribution is to integrate in a single module two important modules present in UAMs: the PSK modulator and the power amplifier

    Interference cancellation and network coding for underwater communication systems

    Get PDF
    It is widely believed that wider access to the aquatic environment will enhance human knowledge and understanding of the world's oceans which constitute the major part of our planet. Hence, the current development of underwater sensing and communication systems will produce scientific, economic and social benefits. New applications will be enabled, such as deeper ocean observation, environmental monitoring, surveying or search and rescue missions. Underwater communications differ from terrestrial communications due to the unpredictable and complex ocean conditions, relying on acoustic waves which are affected by many factors like large propagation losses, long latency, limited bandwidth capacity and channel stability, posing great challenges for reliable data transport in this kind of networks. The aim of this project is to design a future underwater acoustic communication system for dense traffic situations investigating the possibility of Medium Access with Interference Cancellation and Network Coding. The main efforts focus on reliability, low energy consumption, storage capacity, throughput and scalabilit

    Underwater Navigation using Pseudolite

    Get PDF
    Using pseudolite or pseudo satellite, a proven technology for ground and space applications for the augmentation of GPS, is proposed for underwater navigation. Global positioning systems (GPS) like positioning for underwater system, needs minimum of four pseudolite-ranging signals for pseudo-range and accumulated delta range measurements. Using four such measurements and using the models of underwater attenuation and delays, the navigation solution can be found. However, for application where the one-way ranging does not give good accuracy, alternative algorithms based upon the bi-directional and self-difference ranging is proposed using selfcalibrated pseudolite array algorithm. The hardware configuration is proposed for pseudolite transceiver for making the self-calibrated array. The pseudolite array, fixed or moored under the sea, can give position fixing similar to GPS for underwater applications.Defence Science Journal, 2011, 61(4), pp.331-336, DOI:http://dx.doi.org/10.14429/dsj.61.108

    Modelling Underwater Wireless Sensor Networks

    Get PDF

    Advanced Engineering Laboratory project summaries : 1995-1996

    Get PDF
    The Advanced Engineering Laboratory of the Woods Hole Oceanographic Institution is a development laboratory within the Applied Ocean Physics and Engineering Department. Its function is the development of oceanographic instrumentation to test developing theories in oceanography and to enhance current research projects in other disciplines within the community. This report summarizes recent and ongoing projects performed by members of this laboratory

    Multimodal, software defined networking for subsea sensing and monitoring.

    Get PDF
    The prevalence of oceanic industry and ocean borne interests has given rise to the concept of the Underwater Internet of Things as a vector for automation and data analytics in an environment hostile to anthropomorphic activity. Through the Internet of Underwater Things, it is theorised that sensors along the ocean floor or otherwise can be densely connected to the internet through wireless acoustic or optical links. However, both technologies have significant disadvantages that prevent either becoming a dominant technology. This project proposes a wireless software defined multimodal network infrastructure, that is proven using channel modelling and power analysis calculations, to be capable of robustly transmitting sensor data from source to sink by managing each technology according to its optimal environment. It was found that it is achievable to populate an opto-acoustic network in such a way that Successful Delivery Ratio becomes 90%-100% in clear water whilst achieving a 17% saving in overall energy consumption in a network mounted on a pipeline at 200 m depth when compared to a stand-alone equivalent acoustic network

    Performance analysis of bio-signal processing in ocean environment using soft computing techniques

    Get PDF
    Wireless communication has become an essential technology in our day-to-day life both in air and water medium. To monitor the health parameter of human begins, advancement techniques like internet of things is evolved. But to analyze underwater living organisms health parameters, researchers finding difficulties to do so. The reason behind is underwater channels has drawbacks like signal degradation due to multipath propagation, severe ambient noise and Attenuation by bottom and surface loss. In this paper Artificial Neural Networks (ANN) is used to perform data transfer in water medium. A sample EEG signal is generated and trained with 2 and 20 hidden layers. Simulation result showed that error free communication is achieved with 20 hidden layers at 10th iteration. The proposed algorithm is validated using a real time watermark toolbox. Two different modulation scheme was applied along with ANN. In the first scenario, the EEG signal is modulated using convolution code and decoded by Viterbi Algorithm. Multiplexing technique is applied in the second scenario. It is observed that energy level in the order of 40 dB is required for least error rate. It is also evident from simulation result that maximum of 5% CP can be maintained to attain the least Mean Square Error

    A distributed approach to underwater acoustic communications

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2003A novel distributed underwater acoustic networking (UAN) protocol suitable for ad-hoc deployments of both stationary and mobile nodes dispersed across a relatively wide coverage area is presented. Nodes are dynamically clustered in a distributed manner based on the estimated position of one-hop neighbor nodes within a shallow water environment. The spatial dynamic cellular clustering scheme allows scalable communication resource allocation and channel reuse similar in design to land-based cellular architectures, except devoid of the need for a centralized controlling infrastructure. Simulation results demonstrate that relatively high degrees of interference immunity, network connectivity, and network stability can be achieved despite the severe limitations of the underwater acoustic channel
    corecore