31 research outputs found

    Ultra Wideband Oscillators

    Get PDF

    Design and implementation of frequency synthesizers for 3-10 ghz mulitband ofdm uwb communication

    Get PDF
    The allocation of frequency spectrum by the FCC for Ultra Wideband (UWB) communications in the 3.1-10.6 GHz has paved the path for very high data rate Gb/s wireless communications. Frequency synthesis in these communication systems involves great challenges such as high frequency and wideband operation in addition to stringent requirements on frequency hopping time and coexistence with other wireless standards. This research proposes frequency generation schemes for such radio systems and their integrated implementations in silicon based technologies. Special emphasis is placed on efficient frequency planning and other system level considerations for building compact and practical systems for carrier frequency generation in an integrated UWB radio. This work proposes a frequency band plan for multiband OFDM based UWB radios in the 3.1-10.6 GHz range. Based on this frequency plan, two 11-band frequency synthesizers are designed, implemented and tested making them one of the first frequency synthesizers for UWB covering 78% of the licensed spectrum. The circuits are implemented in 0.25µm SiGe BiCMOS and the architectures are based on a single VCO at a fixed frequency followed by an array of dividers, multiplexers and single sideband (SSB) mixers to generate the 11 required bands in quadrature with fast hopping in much less than 9.5 ns. One of the synthesizers is integrated and tested as part of a 3-10 GHz packaged receiver. It draws 80 mA current from a 2.5 V supply and occupies an area of 2.25 mm2. Finally, an architecture for a UWB synthesizer is proposed that is based on a single multiband quadrature VCO, a programmable integer divider with 50% duty cycle and a single sideband mixer. A frequency band plan is proposed that greatly relaxes the tuning range requirement of the multiband VCO and leads to a very digitally intensive architecture for wideband frequency synthesis suitable for implementation in deep submicron CMOS processes. A design in 130nm CMOS occupies less than 1 mm2 while consuming 90 mW. This architecture provides an efficient solution in terms of area and power consumption with very low complexity

    Low Power Analog Processing for Ultra-High-Speed Receivers with RF Correlation

    Get PDF
    Ultra-high-speed data communication receivers (Rxs) conventionally require analog digital converters (ADC)s with high sampling rates which have design challenges in terms of adequate resolution and power. This leads to ultra-high-speed Rxs utilising expensive and bulky high-speed oscilloscopes which are extremely inefficient for demodulation, in terms of power and size. Designing energy-efficient mixed-signal and baseband units for ultra-high-speed Rxs requires a paradigm approach detailed in this paper that circumvents the use of power-hungry ADCs by employing low-power analog processing. The low-power analog Rx employs direct-demodulation with RF correlation using low-power comparators. The Rx is able to support multiple modulations with highest modulation of 16-QAM reported so far for direct-demodulation with RF correlation. Simulations using Matlab, Simulink R2020a® indicate sufficient symbol-error rate (SER) performance at a symbol rate of 8 GS/s for the 71 GHz Urban Micro Cell and 140 GHz indoor channels. Power analysis undertaken with current analog, hybrid and digital beamforming approaches requiring ADCs indicates considerable power savings. This novel approach can be adopted for ultra-high-speed Rxs envisaged for beyond fifth generation (B5G)/sixth generation (6G)/ terahertz (THz) communication without the power-hungry ADCs, leading to low-power integrated design solutions

    Integrated RF oscillators and LO signal generation circuits

    Get PDF
    This thesis deals with fully integrated LC oscillators and local oscillator (LO) signal generation circuits. In communication systems a good-quality LO signal for up- and down-conversion in transmitters is needed. The LO signal needs to span the required frequency range and have good frequency stability and low phase noise. Furthermore, most modern systems require accurate quadrature (IQ) LO signals. This thesis tackles these challenges by presenting a detailed study of LC oscillators, monolithic elements for good-quality LC resonators, and circuits for IQ-signal generation and for frequency conversion, as well as many experimental circuits. Monolithic coils and variable capacitors are essential, and this thesis deals with good structures of these devices and their proper modeling. As experimental test devices, over forty monolithic inductors and thirty varactors have been implemented, measured and modeled. Actively synthesized reactive elements were studied as replacements for these passive devices. At first glance these circuits show promising characteristics, but closer noise and nonlinearity analysis reveals that these circuits suffer from high noise levels and a small dynamic range. Nine circuit implementations with various actively synthesized variable capacitors were done. Quadrature signal generation can be performed with three different methods, and these are analyzed in the thesis. Frequency conversion circuits are used for alleviating coupling problems or to expand the number of frequency bands covered. The thesis includes an analysis of single-sideband mixing, frequency dividers, and frequency multipliers, which are used to perform the four basic arithmetical operations for the frequency tone. Two design cases are presented. The first one is a single-sideband mixing method for the generation of WiMedia UWB LO-signals, and the second one is a frequency conversion unit for a digital period synthesizer. The last part of the thesis presents five research projects. In the first one a temperature-compensated GaAs MESFET VCO was developed. The second one deals with circuit and device development for an experimental-level BiCMOS process. A cable-modem RF tuner IC using a SiGe process was developed in the third project, and a CMOS flip-chip VCO module in the fourth one. Finally, two frequency synthesizers for UWB radios are presented

    Advanced Microwave Circuits and Systems

    Get PDF

    Novel RF/Microwave Circuits And Systems for Lab on-Chip/on-Board Chemical Sensors

    Get PDF
    Recent research focuses on expanding the use of RF/Microwave circuits and systems to include multi-disciplinary applications. One example is the detection of the dielectric properties of chemicals and bio-chemicals at microwave frequencies, which is useful for pharmaceutical applications, food and drug safety, medical diagnosis and material characterization. Dielectric spectroscopy is also quite relevant to detect the frequency dispersive characteristics of materials over a wide frequency range for more accurate detection. In this dissertation, on-chip and on-board solutions for microwave chemical sensing are proposed. An example of an on-chip dielectric detection technique for chemical sensing is presented. An on-chip sensing capacitor, whose capacitance changes when exposed to material under test (MUT), is a part of an LC voltage-controlled oscillator (VCO). The VCO is embedded inside a frequency synthesizer to convert the change in the free runing frequency frequency of the VCO into a change of its input voltage. The system is implemented using 90 nm CMOS technology and the permittivities of MUTs are evaluated using a unique detection procedure in the 7-9 GHz frequency range with an accuracy of 3.7% in an area of 2.5 × 2.5 mm^2 with a power consumption of 16.5 mW. The system is also used for binary mixture detection with a fractional volume accuracy of 1-2%. An on-board miniaturized dielectric spectroscopy system for permittivity detec- tion is also presented. The sensor is based on the detection of the phase difference be- tween the input and output signals of cascaded broadband True-Time-Delay (TTD) cells. The sensing capacitor exposed to MUTs is a part of the TTD cell. The change of the permittivity results in a change of the phase of the microwave signal passing through the TTD cell. The system is fabricated on Rogers Duroid substrates with a total area of 8 × 7.2 cm2. The permittivities of MUTs are detected in the 1-8 GHz frequency range with a detection accuracy of 2%. Also, the sensor is used to extract the fractional volumes of mixtures with accuracy down to 1%. Additionally, multi-band and multi-standard communication systems motivate the trend to develop broadband front-ends covering all the standards for low cost and reduced chip area. Broadband amplifiers are key building blocks in wideband front-ends. A broadband resistive feedback low-noise amplifier (LNA) is presented using a composite cross-coupled CMOS pair for a higher gain and reduced noise figure. The LNA is implemented using 90 nm CMOS technology consuming 18 mW in an area of 0.06 mm2. The LNA shows a gain of 21 dB in the 2-2300 MHz frequency range, a minimum noise figure of 1.4 dB with an IIP3 of -1.5 dBm. Also, a four-stage distributed amplifier is presented providing bandwidth extension with 1-dB flat gain response up to 16 GHz. The flat extended bandwidth is provided using coupled inductors in the gate line with series peaking inductors in the cascode gain stages. The amplifier is fabricated using 180 nm CMOS technology in an area of 1.19 mm2 achieving a power gain of 10 dB, return losses better than 16 dB, noise figure of 3.6-4.9 dB and IIP3 of 0 dBm with 21 mW power consumption. All the implemented circuits and systems in this dissertation are validated, demonstrated and published in several IEEE Journals and Conferences

    System and Circuit Design Techniques for Silicon-based Multi-band/Multi-standard Receivers

    Get PDF
    Today, the advances in Complementary MetalOxideSemiconductor (CMOS) technology have guided the progress in the wireless communications circuits and systems area. Various new communication standards have been developed to accommodate a variety of applications at different frequency bands, such as cellular communications at 900 and 1800 MHz, global positioning system (GPS) at 1.2 and 1.5 GHz, and Bluetooth andWiFi at 2.4 and 5.2 GHz, respectively. The modern wireless technology is now motivated by the global trend of developing multi-band/multistandard terminals for low-cost and multifunction transceivers. Exploring the unused 10-66 GHz frequency spectrum for high data rate communication is also another trend in the wireless industry. In this dissertation, the challenges and solutions for designing a multi-band/multistandard mobile device is addressed from system-level analysis to circuit implementation. A systematic system-level design methodology for block-level budgeting is proposed. The system-level design methodology focuses on minimizing the power consumption of the overall receiver. Then, a novel millimeter-wave dual-band receiver front-end architecture is developed to operate at 24 and 31 GHz. The receiver relies on a newly introduced concept of harmonic selection that helps to reduce the complexity of the dual-band receiver. Wideband circuit techniques for millimeterwave frequencies are also investigated and new bandwidth extension techniques are proposed for the dual-band 24/31 GHz receiver. These new techniques are applied for the low noise amplifier and millimeter-wave mixer resulting in the widest reported operating bandwidth in K-band, while consuming less power consumption. Additionally, various receiver building blocks, such as a low noise amplifier with reconfigurable input matching network for multi-band receivers, and a low drop-out regulator with high power supply rejection are analyzed and proposed. The low noise amplifier presents the first one with continuously reconfigurable input matching network, while achieving a noise figure comparable to the wideband techniques. The low drop-out regulator presented the first one with high power supply rejection in the mega-hertz frequency range. All the proposed building blocks and architecture in this dissertation are implemented using the existing silicon-based technologies, and resulted in several publications in IEEE Journals and Conferences

    Circuit design and technological limitations of silicon RFICs for wireless applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 201-206).Semiconductor technologies have been a key to the growth in wireless communication over the past decade, bringing added convenience and accessibility through advantages in cost, size, and power dissipation. A better understanding of how an IC technology affects critical RF signal chain components will greatly aid the design of wireless systems and the development of process technologies for the increasingly complex applications that lie on the horizon. Many of the evolving applications will embody the concept of adaptive performance to extract the maximum capability from the RF link in terms of bandwidth, dynamic range, and power consumption-further engaging the interplay of circuits and devices is this design space and making it even more difficult to discern a clear guide upon which to base technology decisions. Rooted in these observations, this research focuses on two key themes: 1) devising methods of implementing RF circuits which allow the performance to be dynamically tuned to match real-time conditions in a power-efficient manner, and 2) refining approaches for thinking about the optimization of RF circuits at the device level. Working toward a 5.8 GHz receiver consistent with 1 GBit/s operation, signal path topologies and adjustable biasing circuits are developed for low-noise amplifiers (LNAs) and voltage-controlled oscillators (VCOs) to provide a facility by which power can be conserved when the demand for sensitivity is low. As an integral component in this effort, tools for exploring device level issues are illustrated with both circuit types, helping to identify physical limitations and design techniques through which they can be mitigated.(cont.) The design of two LNAs and four VCOs is described, each realized to provide a fully-integrated solution in a 0.5 tm SiGe BiCMOS process, and each incorporating all biasing and impedance matching on chip. Measured results for these 5-6GHz circuits allow a number of poignant technology issues to be enlightened, including an exhibition of the importance of terminal resistances and capacitances, a demonstration of where the transistor fT is relevant and where it is not, and the most direct comparison of bipolar and CMOS solutions offered to date in this frequency range. In addition to covering a number of new circuit techniques, this work concludes with some new views regarding IC technologies for RF applications.by Donald A. Hitko.Ph.D

    High-frequency oscillator design for integrated transceivers

    Get PDF
    corecore