60 research outputs found

    Design of Soft Error Robust High Speed 64-bit Logarithmic Adder

    Get PDF
    Continuous scaling of the transistor size and reduction of the operating voltage have led to a significant performance improvement of integrated circuits. However, the vulnerability of the scaled circuits to transient data upsets or soft errors, which are caused by alpha particles and cosmic neutrons, has emerged as a major reliability concern. In this thesis, we have investigated the effects of soft errors in combinational circuits and proposed soft error detection techniques for high speed adders. In particular, we have proposed an area-efficient 64-bit soft error robust logarithmic adder (SRA). The adder employs the carry merge Sklansky adder architecture in which carries are generated every 4 bits. Since the particle-induced transient, which is often referred to as a single event transient (SET) typically lasts for 100~200 ps, the adder uses time redundancy by sampling the sum outputs twice. The sampling instances have been set at 110 ps apart. In contrast to the traditional time redundancy, which requires two clock cycles to generate a given output, the SRA generates an output in a single clock cycle. The sampled sum outputs are compared using a 64-bit XOR tree to detect any possible error. An energy efficient 4-input transmission gate based XOR logic is implemented to reduce the delay and the power in this case. The pseudo-static logic (PSL), which has the ability to recover from a particle induced transient, is used in the adder implementation. In comparison with the space redundant approach which requires hardware duplication for error detection, the SRA is 50% more area efficient. The proposed SRA is simulated for different operands with errors inserted at different nodes at the inputs, the carry merge tree, and the sum generation circuit. The simulation vectors are carefully chosen such that the SET is not masked by error masking mechanisms, which are inherently present in combinational circuits. Simulation results show that the proposed SRA is capable of detecting 77% of the errors. The undetected errors primarily result when the SET causes an even number of errors and when errors occur outside the sampling window

    Investigations into the feasibility of an on-line test methodology

    Get PDF
    This thesis aims to understand how information coding and the protocol that it supports can affect the characteristics of electronic circuits. More specifically, it investigates an on-line test methodology called IFIS (If it Fails It Stops) and its impact on the design, implementation and subsequent characteristics of circuits intended for application specific lC (ASIC) technology. The first study investigates the influences of information coding and protocol on the characteristics of IFIS systems. The second study investigates methods of circuit design applicable to IFIS cells and identifies the· technique possessing the characteristics most suitable for on-line testing. The third study investigates the characteristics of a 'real-life' commercial UART re-engineered using the techniques resulting from the previous two studies. The final study investigates the effects of the halting properties endowed by the protocol on failure diagnosis within IFIS systems. The outcome of this work is an identification and characterisation of the factors that influence behaviour, implementation costs and the ability to test and diagnose IFIS designs

    Approximate logic circuits: Theory and applications

    Get PDF
    CMOS technology scaling, the process of shrinking transistor dimensions based on Moore's law, has been the thrust behind increasingly powerful integrated circuits for over half a century. As dimensions are scaled to few tens of nanometers, process and environmental variations can significantly alter transistor characteristics, thus degrading reliability and reducing performance gains in CMOS designs with technology scaling. Although design solutions proposed in recent years to improve reliability of CMOS designs are power-efficient, the performance penalty associated with these solutions further reduces performance gains with technology scaling, and hence these solutions are not well-suited for high-performance designs. This thesis proposes approximate logic circuits as a new logic synthesis paradigm for reliable, high-performance computing systems. Given a specification, an approximate logic circuit is functionally equivalent to the given specification for a "significant" portion of the input space, but has a smaller delay and power as compared to a circuit implementation of the original specification. This contributions of this thesis include (i) a general theory of approximation and efficient algorithms for automated synthesis of approximations for unrestricted random logic circuits, (ii) logic design solutions based on approximate circuits to improve reliability of designs with negligible performance penalty, and (iii) efficient decomposition algorithms based on approxiiii mate circuits to improve performance of designs during logic synthesis. This thesis concludes with other potential applications of approximate circuits and identifies. open problems in logic decomposition and approximate circuit synthesis

    The impact of soft errors in logic and its commercialisation in ARM IP

    Get PDF
    The significance of soft errors in logic has grown because of reduced memory vulnerability and the shrinking dimensions of semiconductor technology coupled with the increasing amount of logic integrated into a chip. Consequently, some of ARM’s customers are concerned about how soft errors on the bus interconnect will affect the dependability of their systems, since the interconnect is a critical hub of communication in a SoC and represents a substantial and growing amount of logic. With the rising complexity of their systems, the interconnect will become larger and more complex in the future, adding to their concern. In this work the impact of soft errors on the bus interconnect logic was investigated and a product was developed to ameliorate the effects of such errors on ARM’s customers’ products. Methods to measure the SER of ARM IP were investigated by focusing on logical masking, which is a component in the calculation of the SER. The effect that the topology of a combinatorial logic circuit has on its logical masking rate was considered by performing gate-level statistical fault injection on different implementations of adder circuits. Significant variation in logical masking was found ranging from a factor of 3.1 at a synthesis frequency of 100 MHz to a factor of 2.1 at 900 MHz. This difference is explained in an original way by correlating logical masking with the circuit’s path length and fan-out. These properties could be used to create a static method of measuring the logical masking rather than the current time-consuming method of dynamic simulation. Additionally, nearly 30% of faults injected cause more than one error, which means that the combinational SER will be underestimated if research does not take gate fan-out into consideration. Using this methodology a circuit designer can now base his choice or development of a circuit on its reliability as well as its performance, power, and area. Studying the variation in the factors that affect the SER is important to ensure accuracy in addressing customer requirements. Although it is important to consider the rate of soft error occurrence, in this work the impact of errors is demonstrated to be critical. Using protocol-level fault injection it is shown that faults on the ARM AXI bus interconnect can have a serious effect on the reliability of the entire SoC such as deadlock, memory corruption, or undefined behaviour. Using a fault-path traversal algorithm, it is demonstrated that traditional error detection codes are not sufficient at preventing these failures when faults occur on certain AXI bus signals. This led to the development of novel fault tolerant methods that provide protection for these identified signals. Based on these developments, a product was proposed for an add-on to the AXI bus interconnect that can detect, correct, and report logic soft errors without changing the AMBA standard or the customer’s connecting IP

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Soft error analysis and mitigation in circuits involving C-elements

    Get PDF
    PhD ThesisA SEU or soft error is defined as a temporary error on digital electronics due to the effect of radiation. Such an error can cause system failure, e.g. a deadlock in an asynchronous system or production of incorrect outputs due to data corruption. The first part of this thesis studies the impact of process variation, temperature, voltage and size scaling within the same process on the vulnerability of the nodes of C-element circuits. The objectives are to identify vulnerable to SEU nodes inside a C-element and to find the critical charge needed to flip the output from low to high (0-1) and high to low (1-0) on different implementations of C-elements. In the second part, a framework to compute the SEU error rates is developed. The error rates of circuits are a trade-off between the size of the transistors and the total area of vulnerability. Comparisons of the vulnerability of different configurations of a C-element are made, and error rates are calculated. The third part focuses on soft error mitigation for single and dual rail latches. The latches are able to detect and correct errors due to SEU. The functionalities of the solutions have been validated by simulation. A comprehensive analysis of the performance of the latches under variations of the process and temperature are presented. The fourth part focuses on testing of the new latches. The objective is to design complex systems and incorporate both single rail and dual rail latches in the systems. Errors are injected in the latches and the functionality of the error correcting latches towards the SEU errors are observed at their outputs. The framework to compute error rates and soft error mitigation developed in this thesis can be used by designers in predicting the occurrence of soft error and mitigating soft error in systems

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2
    • …
    corecore