4,813 research outputs found

    Nest-DGIL: Nesterov-optimized Deep Geometric Incremental Learning for CS Image Reconstruction

    Get PDF
    Proximal gradient-based optimization is one of the most common strategies for solving image inverse problems as well as easy to implement. However, these techniques often generate heavy artifacts in image reconstruction. One of the most popular refinement methods is to fine-tune the regularization parameter to alleviate such artifacts, but it may not always be sufficient or applicable due to increased computational costs. In this work, we propose a deep geometric incremental learning framework based on second Nesterov proximal gradient optimization. The proposed end-to-end network not only has the powerful learning ability for high/low frequency image features,but also can theoretically guarantee that geometric texture details will be reconstructed from preliminary linear reconstruction.Furthermore, it can avoid the risk of intermediate reconstruction results falling outside the geometric decomposition domains and achieve fast convergence. Our reconstruction framework is decomposed into four modules including general linear reconstruction, cascade geometric incremental restoration, Nesterov acceleration and post-processing. In the image restoration step,a cascade geometric incremental learning module is designed to compensate for the missing texture information from different geometric spectral decomposition domains. Inspired by overlap-tile strategy, we also develop a post-processing module to remove the block-effect in patch-wise-based natural image reconstruction. All parameters in the proposed model are learnable,an adaptive initialization technique of physical-parameters is also employed to make model flexibility and ensure converging smoothly. We compare the reconstruction performance of the proposed method with existing state-of-the-art methods to demonstrate its superiority. Our source codes are available at https://github.com/fanxiaohong/Nest-DGIL.Comment: 15 page

    Lung nodule modeling and detection for computerized image analysis of low dose CT imaging of the chest.

    Get PDF
    From a computerized image analysis prospective, early diagnosis of lung cancer involves detection of doubtful nodules and classification into different pathologies. The detection stage involves a detection approach, usually by template matching, and an authentication step to reduce false positives, usually conducted by a classifier of one form or another; statistical, fuzzy logic, support vector machines approaches have been tried. The classification stage matches, according to a particular approach, the characteristics (e.g., shape, texture and spatial distribution) of the detected nodules to common characteristics (again, shape, texture and spatial distribution) of nodules with known pathologies (confirmed by biopsies). This thesis focuses on the first step; i.e., nodule detection. Specifically, the thesis addresses three issues: a) understanding the CT data of typical low dose CT (LDCT) scanning of the chest, and devising an image processing approach to reduce the inherent artifacts in the scans; b) devising an image segmentation approach to isolate the lung tissues from the rest of the chest and thoracic regions in the CT scans; and c) devising a nodule modeling methodology to enhance the detection rate and lend benefits for the ultimate step in computerized image analysis of LDCT of the lungs, namely associating a pathology to the detected nodule. The methodology for reducing the noise artifacts is based on noise analysis and examination of typical LDCT scans that may be gathered on a repetitive fashion; since, a reduction in the resolution is inevitable to avoid excessive radiation. Two optimal filtering methods are tested on samples of the ELCAP screening data; the Weiner and the Anisotropic Diffusion Filters. Preference is given to the Anisotropic Diffusion Filter, which can be implemented on 7x7 blocks/windows of the CT data. The methodology for lung segmentation is based on the inherent characteristics of the LDCT scans, shown as distinct bi-modal gray scale histogram. A linear model is used to describe the histogram (the joint probability density function of the lungs and non-lungs tissues) by a linear combination of weighted kernels. The Gaussian kernels were chosen, and the classic Expectation-Maximization (EM) algorithm was employed to estimate the marginal probability densities of the lungs and non-lungs tissues, and select an optimal segmentation threshold. The segmentation is further enhanced using standard shape analysis based on mathematical morphology, which improves the continuity of the outer and inner borders of the lung tissues. This approach (a preliminary version of it appeared in [14]) is found to be adequate for lung segmentation as compared to more sophisticated approaches developed at the CVIP Lab (e.g., [15][16]) and elsewhere. The methodology developed for nodule modeling is based on understanding the physical characteristics of the nodules in LDCT scans, as identified by human experts. An empirical model is introduced for the probability density of the image intensity (or Hounsfield units) versus the radial distance measured from the centroid – center of mass - of typical nodules. This probability density showed that the nodule spatial support is within a circle/square of size 10 pixels; i.e., limited to 5 mm in length; which is within the range that the radiologist specify to be of concern. This probability density is used to fill in the intensity (or Hounsfield units) of parametric nodule models. For these models (e.g., circles or semi-circles), given a certain radius, we calculate the intensity (or Hounsfield units) using an exponential expression for the radial distance with parameters specified from the histogram of an ensemble of typical nodules. This work is similar in spirit to the earlier work of Farag et al., 2004 and 2005 [18][19], except that the empirical density of the radial distance and the histogram of typical nodules provide a data-driven guide for estimating the intensity (or Hounsfield units) of the nodule models. We examined the sensitivity and specificity of parametric nodules in a template-matching framework for nodule detection. We show that false positives are inevitable problems with typical machine learning methods of automatic lung nodule detection, which invites further efforts and perhaps fresh thinking into automatic nodule detection. A new approach for nodule modeling is introduced in Chapter 5 of this thesis, which brings high promise in both the detection, and the classification of nodules. Using the ELCAP study, we created an ensemble of four types of nodules and generated a nodule model for each type based on optimal data reduction methods. The resulting nodule model, for each type, has lead to drastic improvements in the sensitivity and specificity of nodule detection. This approach may be used as well for classification. In conclusion, the methodologies in this thesis are based on understanding the LDCT scans and what is to be expected in terms of image quality. Noise reduction and image segmentation are standard. The thesis illustrates that proper nodule models are possible and indeed a computerized approach for image analysis to detect and classify lung nodules is feasible. Extensions to the results in this thesis are immediate and the CVIP Lab has devised plans to pursue subsequent steps using clinical data

    Modeling small objects under uncertainties : novel algorithms and applications.

    Get PDF
    Active Shape Models (ASM), Active Appearance Models (AAM) and Active Tensor Models (ATM) are common approaches to model elastic (deformable) objects. These models require an ensemble of shapes and textures, annotated by human experts, in order identify the model order and parameters. A candidate object may be represented by a weighted sum of basis generated by an optimization process. These methods have been very effective for modeling deformable objects in biomedical imaging, biometrics, computer vision and graphics. They have been tried mainly on objects with known features that are amenable to manual (expert) annotation. They have not been examined on objects with severe ambiguities to be uniquely characterized by experts. This dissertation presents a unified approach for modeling, detecting, segmenting and categorizing small objects under uncertainty, with focus on lung nodules that may appear in low dose CT (LDCT) scans of the human chest. The AAM, ASM and the ATM approaches are used for the first time on this application. A new formulation to object detection by template matching, as an energy optimization, is introduced. Nine similarity measures of matching have been quantitatively evaluated for detecting nodules less than 1 em in diameter. Statistical methods that combine intensity, shape and spatial interaction are examined for segmentation of small size objects. Extensions of the intensity model using the linear combination of Gaussians (LCG) approach are introduced, in order to estimate the number of modes in the LCG equation. The classical maximum a posteriori (MAP) segmentation approach has been adapted to handle segmentation of small size lung nodules that are randomly located in the lung tissue. A novel empirical approach has been devised to simultaneously detect and segment the lung nodules in LDCT scans. The level sets methods approach was also applied for lung nodule segmentation. A new formulation for the energy function controlling the level set propagation has been introduced taking into account the specific properties of the nodules. Finally, a novel approach for classification of the segmented nodules into categories has been introduced. Geometric object descriptors such as the SIFT, AS 1FT, SURF and LBP have been used for feature extraction and matching of small size lung nodules; the LBP has been found to be the most robust. Categorization implies classification of detected and segmented objects into classes or types. The object descriptors have been deployed in the detection step for false positive reduction, and in the categorization stage to assign a class and type for the nodules. The AAMI ASMI A TM models have been used for the categorization stage. The front-end processes of lung nodule modeling, detection, segmentation and classification/categorization are model-based and data-driven. This dissertation is the first attempt in the literature at creating an entirely model-based approach for lung nodule analysis

    Deep Learning Based Medical Image Analysis with Limited Data

    Full text link
    Deep Learning Methods have shown its great effort in the area of Computer Vision. However, when solving the problems of medical imaging, deep learning’s power is confined by limited data available. We present a series of novel methodologies for solving medical imaging analysis problems with limited Computed tomography (CT) scans available. Our method, based on deep learning, with different strategies, including using Generative Adversar- ial Networks, two-stage training, infusing the expert knowledge, voting based or converting to other space, solves the data set limitation issue for the cur- rent medical imaging problems, specifically cancer detection and diagnosis, and shows very good performance and outperforms the state-of-art results in the literature. With the self-learned features, deep learning based techniques start to be applied to the biomedical imaging problems and various structures have been designed. In spite of its simplity and anticipated good performance, the deep learning based techniques can not perform to its best extent due to the limited size of data sets for the medical imaging problems. On the other side, the traditional hand-engineered features based methods have been studied in the past decades and a lot of useful features have been found by these research for the task of detecting and diagnosing the pulmonary nod- ules on CT scans, but these methods are usually performed through a series of complicated procedures with manually empirical parameter adjustments. Our method significantly reduces the complications of the traditional proce- dures for pulmonary nodules detection, while retaining and even outperforming the state-of-art accuracy. Besides, we make contribution on how to convert low-dose CT image to full-dose CT so as to adapting current models on the newly-emerged low-dose CT data
    • …
    corecore