61,447 research outputs found

    Low-Degree Spanning Trees of Small Weight

    Get PDF
    The degree-d spanning tree problem asks for a minimum-weight spanning tree in which the degree of each vertex is at most d. When d=2 the problem is TSP, and in this case, the well-known Christofides algorithm provides a 1.5-approximation algorithm (assuming the edge weights satisfy the triangle inequality). In 1984, Christos Papadimitriou and Umesh Vazirani posed the challenge of finding an algorithm with performance guarantee less than 2 for Euclidean graphs (points in R^n) and d > 2. This paper gives the first answer to that challenge, presenting an algorithm to compute a degree-3 spanning tree of cost at most 5/3 times the MST. For points in the plane, the ratio improves to 3/2 and the algorithm can also find a degree-4 spanning tree of cost at most 5/4 times the MST.Comment: conference version in Symposium on Theory of Computing (1994

    Bicriteria Network Design Problems

    Full text link
    We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a <subgraph \from a given subgraph-class that minimizes the second objective subject to the budget on the first. We consider three different criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same %(note that the cost functions continue to be different) we present a ``black box'' parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a cluster-based approach to devise a approximation algorithms --- the solutions output violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. We show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur

    Spanning Trees with Many Leaves in Graphs without Diamonds and Blossoms

    Full text link
    It is known that graphs on n vertices with minimum degree at least 3 have spanning trees with at least n/4+2 leaves and that this can be improved to (n+4)/3 for cubic graphs without the diamond K_4-e as a subgraph. We generalize the second result by proving that every graph with minimum degree at least 3, without diamonds and certain subgraphs called blossoms, has a spanning tree with at least (n+4)/3 leaves, and generalize this further by allowing vertices of lower degree. We show that it is necessary to exclude blossoms in order to obtain a bound of the form n/3+c. We use the new bound to obtain a simple FPT algorithm, which decides in O(m)+O^*(6.75^k) time whether a graph of size m has a spanning tree with at least k leaves. This improves the best known time complexity for MAX LEAF SPANNING TREE.Comment: 25 pages, 27 Figure

    Globally and Locally Minimal Weight Spanning Tree Networks

    Full text link
    The competition between local and global driving forces is significant in a wide variety of naturally occurring branched networks. We have investigated the impact of a global minimization criterion versus a local one on the structure of spanning trees. To do so, we consider two spanning tree structures - the generalized minimal spanning tree (GMST) defined by Dror et al. [1] and an analogous structure based on the invasion percolation network, which we term the generalized invasive spanning tree or GIST. In general, these two structures represent extremes of global and local optimality, respectively. Structural characteristics are compared between the GMST and GIST for a fixed lattice. In addition, we demonstrate a method for creating a series of structures which enable one to span the range between these two extremes. Two structural characterizations, the occupied edge density (i.e., the fraction of edges in the graph that are included in the tree) and the tortuosity of the arcs in the trees, are shown to correlate well with the degree to which an intermediate structure resembles the GMST or GIST. Both characterizations are straightforward to determine from an image and are potentially useful tools in the analysis of the formation of network structures.Comment: 23 pages, 5 figures, 2 tables, typographical error correcte

    Simplifying Random Satisfiability Problem by Removing Frustrating Interactions

    Full text link
    How can we remove some interactions in a constraint satisfaction problem (CSP) such that it still remains satisfiable? In this paper we study a modified survey propagation algorithm that enables us to address this question for a prototypical CSP, i.e. random K-satisfiability problem. The average number of removed interactions is controlled by a tuning parameter in the algorithm. If the original problem is satisfiable then we are able to construct satisfiable subproblems ranging from the original one to a minimal one with minimum possible number of interactions. The minimal satisfiable subproblems will provide directly the solutions of the original problem.Comment: 21 pages, 16 figure

    Near-linear Time Algorithm for Approximate Minimum Degree Spanning Trees

    Full text link
    Given a graph G=(V,E)G = (V, E), we wish to compute a spanning tree whose maximum vertex degree, i.e. tree degree, is as small as possible. Computing the exact optimal solution is known to be NP-hard, since it generalizes the Hamiltonian path problem. For the approximation version of this problem, a O~(mn)\tilde{O}(mn) time algorithm that computes a spanning tree of degree at most Δ+1\Delta^* +1 is previously known [F\"urer \& Raghavachari 1994]; here Δ\Delta^* denotes the minimum tree degree of all the spanning trees. In this paper we give the first near-linear time approximation algorithm for this problem. Specifically speaking, we propose an O~(1ϵ7m)\tilde{O}(\frac{1}{\epsilon^7}m) time algorithm that computes a spanning tree with tree degree (1+ϵ)Δ+O(1ϵ2logn)(1+\epsilon)\Delta^* + O(\frac{1}{\epsilon^2}\log n) for any constant ϵ(0,16)\epsilon \in (0,\frac{1}{6}). Thus, when Δ=ω(logn)\Delta^*=\omega(\log n), we can achieve approximate solutions with constant approximate ratio arbitrarily close to 1 in near-linear time.Comment: 17 page
    corecore