91 research outputs found

    REAL-TIME VIDEO WATERMARKING FOR COPYRIGHT PROTECTION BASED ON HUMAN PERCEPTION

    Get PDF
    There is a need for real-time copyright logo insertion in emerging applications, such as Internet protocol television (IPTV). This situation arises in IP-TV and digital TV broadcasting when video residing in a server has to be broadcast by different stations and under different broadcasting rights. Embedded systems that are involved in broadcasting need to have embedded copyright protection. Existing works are targeted towards invisible watermarking, not useful for logo insertion. MPEG-4 is the mainstream exchangeable video format in the Internet today because it has higher and flexible compression rate, lower bit rate, and higher efficiency while superior visual quality.The main steps for MPEG-4 are color space conversion and sampling, DCT and its inverse (IDCT), quantization, zigzag scanning, motion estimation, and entropy coding. In this work a watermarking algorithm that performs the broadcaster\u27s logo insertion as watermark in the DCT domain is been presented. The robustness of DCT watermarking arises from the fact that if an attack tries to remove watermarking at mid frequencies, it will risk degrading the fidelity of the image\video because some perceptive details are at mid frequencies. The suggested methods has implemented in matlab

    A novel QR-code based watermarking scheme for digital rights

    Get PDF
    This paper presents a digital rights protection scheme for both colour and grayscale images using a novel approach that combines watermarking and cryptography. The schema involves two parties: the owner of the digital rights and a generic user who acquired some rights on a copy of the image that will be watermarked. The watermark, a QR code derived from a signed “License Agreement”, is repeatedly inserted, and scrambled, by the image right’s owner, into the frequency components of the image, thus producing the watermarked image. The schema, a non-blind type, achieves good perceptive quality and fair robustness using the 3rd level of the Discrete Wavelet Transform. The experimental results show that, inserting more occurrences of a scrambled QR code, the proposed algorithm is quite resistant to JPEG compression, rotation, cropping and salt & peeper noise

    Visual Privacy Protection Methods: A Survey

    Get PDF
    Recent advances in computer vision technologies have made possible the development of intelligent monitoring systems for video surveillance and ambient-assisted living. By using this technology, these systems are able to automatically interpret visual data from the environment and perform tasks that would have been unthinkable years ago. These achievements represent a radical improvement but they also suppose a new threat to individual’s privacy. The new capabilities of such systems give them the ability to collect and index a huge amount of private information about each individual. Next-generation systems have to solve this issue in order to obtain the users’ acceptance. Therefore, there is a need for mechanisms or tools to protect and preserve people’s privacy. This paper seeks to clarify how privacy can be protected in imagery data, so as a main contribution a comprehensive classification of the protection methods for visual privacy as well as an up-to-date review of them are provided. A survey of the existing privacy-aware intelligent monitoring systems and a valuable discussion of important aspects of visual privacy are also provided.This work has been partially supported by the Spanish Ministry of Science and Innovation under project “Sistema de visión para la monitorización de la actividad de la vida diaria en el hogar” (TIN2010-20510-C04-02) and by the European Commission under project “caring4U - A study on people activity in private spaces: towards a multisensor network that meets privacy requirements” (PIEF-GA-2010-274649). José Ramón Padilla López and Alexandros Andre Chaaraoui acknowledge financial support by the Conselleria d'Educació, Formació i Ocupació of the Generalitat Valenciana (fellowship ACIF/2012/064 and ACIF/2011/160 respectively)

    On the data hiding theory and multimedia content security applications

    Get PDF
    This dissertation is a comprehensive study of digital steganography for multimedia content protection. With the increasing development of Internet technology, protection and enforcement of multimedia property rights has become a great concern to multimedia authors and distributors. Watermarking technologies provide a possible solution for this problem. The dissertation first briefly introduces the current watermarking schemes, including their applications in video,, image and audio. Most available embedding schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo random signature sequence is embedded into the host signal and the information is extracted via correlation. The correlation detection problem is discussed at the beginning. It is concluded that the correlator is not optimum in oblivious detection. The Maximum Likelihood detector is derived and some feasible suboptimal detectors are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is revealed that the SS scheme is not very efficient due to its poor host noise suppression. The watermark domain selection problem is addressed subsequently. Some implications on hiding capacity and reliability are also studied. The last topic in SS modulation scheme is the sequence selection. The relationship between sequence bandwidth and synchronization requirement is detailed in the work. It is demonstrated that the white sequence commonly used in watermarking may not really boost watermark security. To address the host noise suppression problem, the hidden communication is modeled as a general hypothesis testing problem and a set partitioning scheme is proposed. Simulation studies and mathematical analysis confirm that it outperforms the SS schemes in host noise suppression. The proposed scheme demonstrates improvement over the existing embedding schemes. Data hiding in audio signals are explored next. The audio data hiding is believed a more challenging task due to the human sensitivity to audio artifacts and advanced feature of current compression techniques. The human psychoacoustic model and human music understanding are also covered in the work. Then as a typical audio perceptual compression scheme, the popular MP3 compression is visited in some length. Several schemes, amplitude modulation, phase modulation and noise substitution are presented together with some experimental results. As a case study, a music bitstream encryption scheme is proposed. In all these applications, human psychoacoustic model plays a very important role. A more advanced audio analysis model is introduced to reveal implications on music understanding. In the last part, conclusions and future research are presented

    ID Photograph hashing : a global approach

    No full text
    This thesis addresses the question of the authenticity of identity photographs, part of the documents required in controlled access. Since sophisticated means of reproduction are publicly available, new methods / techniques should prevent tampering and unauthorized reproduction of the photograph. This thesis proposes a hashing method for the authentication of the identity photographs, robust to print-and-scan. This study focuses also on the effects of digitization at hash level. The developed algorithm performs a dimension reduction, based on independent component analysis (ICA). In the learning stage, the subspace projection is obtained by applying ICA and then reduced according to an original entropic selection strategy. In the extraction stage, the coefficients obtained after projecting the identity image on the subspace are quantified and binarized to obtain the hash value. The study reveals the effects of the scanning noise on the hash values of the identity photographs and shows that the proposed method is robust to the print-and-scan attack. The approach focusing on robust hashing of a restricted class of images (identity) differs from classical approaches that address any imageCette thèse traite de la question de l’authenticité des photographies d’identité, partie intégrante des documents nécessaires lors d’un contrôle d’accès. Alors que les moyens de reproduction sophistiqués sont accessibles au grand public, de nouvelles méthodes / techniques doivent empêcher toute falsification / reproduction non autorisée de la photographie d’identité. Cette thèse propose une méthode de hachage pour l’authentification de photographies d’identité, robuste à l’impression-lecture. Ce travail met ainsi l’accent sur les effets de la numérisation au niveau de hachage. L’algorithme mis au point procède à une réduction de dimension, basée sur l’analyse en composantes indépendantes (ICA). Dans la phase d’apprentissage, le sous-espace de projection est obtenu en appliquant l’ICA puis réduit selon une stratégie de sélection entropique originale. Dans l’étape d’extraction, les coefficients obtenus après projection de l’image d’identité sur le sous-espace sont quantifiés et binarisés pour obtenir la valeur de hachage. L’étude révèle les effets du bruit de balayage intervenant lors de la numérisation des photographies d’identité sur les valeurs de hachage et montre que la méthode proposée est robuste à l’attaque d’impression-lecture. L’approche suivie en se focalisant sur le hachage robuste d’une classe restreinte d’images (d’identité) se distingue des approches classiques qui adressent une image quelconqu

    Attention Driven Solutions for Robust Digital Watermarking Within Media

    Get PDF
    As digital technologies have dramatically expanded within the last decade, content recognition now plays a major role within the control of media. Of the current recent systems available, digital watermarking provides a robust maintainable solution to enhance media security. The two main properties of digital watermarking, imperceptibility and robustness, are complimentary to each other but by employing visual attention based mechanisms within the watermarking framework, highly robust watermarking solutions are obtainable while also maintaining high media quality. This thesis firstly provides suitable bottom-up saliency models for raw image and video. The image and video saliency algorithms are estimated directly from within the wavelet domain for enhanced compatibility with the watermarking framework. By combining colour, orientation and intensity contrasts for the image model and globally compensated object motion in the video model, novel wavelet-based visual saliency algorithms are provided. The work extends these saliency models into a unique visual attention-based watermarking scheme by increasing the watermark weighting parameter within visually uninteresting regions. An increased watermark robustness, up to 40%, against various filtering attacks, JPEG2000 and H.264/AVC compression is obtained while maintaining the media quality, verified by various objective and subjective evaluation tools. As most video sequences are stored in an encoded format, this thesis studies watermarking schemes within the compressed domain. Firstly, the work provides a compressed domain saliency model formulated directly within the HEVC codec, utilizing various coding decisions such as block partition size, residual magnitude, intra frame angular prediction mode and motion vector difference magnitude. Large computational savings, of 50% or greater, are obtained compared with existing methodologies, as the saliency maps are generated from partially decoded bitstreams. Finally, the saliency maps formulated within the compressed HEVC domain are studied within the watermarking framework. A joint encoder and a frame domain watermarking scheme are both proposed by embedding data into the quantised transform residual data or wavelet coefficients, respectively, which exhibit low visual salience
    corecore