137 research outputs found

    An adaptive real-time intelligent system to enhance self-care of chronic disease (ARISES)

    Get PDF
    Diabetes mellitus is an increasingly prevalent chronic metabolic condition characterised by impaired glucose homeostasis and raised blood glucose levels (hyperglycaemia). Broadly categorised as either type 1 (T1DM) or type 2 diabetes (T2DM), people with diabetes are largely responsible for self-managing their blood glucose levels. Despite the development of diabetes technologies such as real time continuous glucose monitoring (RT-CGM), many individuals are frequently exposed to iatrogenic low blood glucose levels (hypoglycaemia). Severe hypoglycaemia is associated with an increased risk of recurrent hypoglycaemia, impaired symptomatic awareness of hypoglycaemia, and potentially death if left untreated. This thesis affirmed the existing clinical impact of severe hypoglycaemia and its recurrent risk in a six-month analysis of severe hypoglycaemia attended by the London Ambulance Service NHS Trust (LAS). Fewer incidents of severe hypoglycaemia observed in a date matched repeat analysis during the 2020 COVID-19 lockdown suggested improved self-management possibly motivated by a proximal fear of hospitalisation and improved structure at home. Finally, a 12-week randomised control trial demonstrating a significant difference in time spent in hypoglycaemia <3mmol/L, is the first study to prove the immediate provision of RT-CGM significantly reduces the risk of recurrent hypoglycaemia. Moreover, it highlighted the impact of socioeconomic disparity as a barrier to effective hypoglycaemia risk modification. This guided the design of an adaptive real time intelligent system to enhance self-care of chronic disease (ARISES) aimed to deliver therapeutic and lifestyle decision support for people with T1DM. The ARISES graphic user interface (GUI) design was a collaborative process conceived in a series of focus group meetings including people with T1DM. Finally, a 12-week observational study using RT-CGM, a physiological sensor wristband, and a mobile diary app, allowed for a sub-analysis identifying measurable physiological parameters associated with current and impending hypoglycaemia in people with T1DM.Open Acces

    The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms

    Get PDF
    Individuals with diabetes mellitus (DM) disclose a higher incidence and a poorer prognosis of heart failure (HF) than non-diabetic people, even in the absence of other HF risk factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot topic of research since its first description and is still under active investigation, as a complex interplay among multiple mechanisms may play a role at systemic, myocardial, and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal calcium signaling, inflammation, epigenetic factors, and others. These disturbances predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading to left ventricular diastolic and systolic dysfunction. This Review aims to outline the major pathophysiological changes and the underlying mechanisms leading to myocardial remodeling and cardiac functional derangement in DM-CMP

    Injection Site Massage to Improve the Pharmacokinetics of Aspart in Obese Adolescents with Diabetes

    Get PDF
    The invention of rapid-acting insulin analogs, such as aspart, was a great step forward in achieving optimal control of blood glucose in patients with type 1 diabetes. Aspart’s action resembles the physiologic endogenous post-meal insulin action; however, the slow rate of absorption through subcutaneous tissue leads to a delay in the time to peak levels and action of pre-meal insulin injection and suboptimal control of postprandial blood glucose excursions. We propose that massaging the site of aspart injection will significantly accelerate insulin action and mitigate postprandial blood glycemic excursions. The study will investigate the effect of injection site massage on the pharmacokinetics and pharmacodynamics of subcutaneously administered aspart in overweight and obese adolescents with type 1 diabetes who are at high-risk for impaired insulin action. Massage will offer a cost effective solution to the undesired postprandial glycemic excursions that directly and indirectly contribute to mortality and morbidity associated with diabetes

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Abstracts of the 5th International Academic Medical Congress of MaranhĂŁo (V COIMAMA) 2018

    Get PDF
    • …
    corecore