22,772 research outputs found

    Analytical Modeling and Experimental Validation of NB-IoT Device Energy Consumption

    Get PDF
    The recent standardization of 3GPP Narrowband Internet of Things (NB-IoT) paves the way to support low-power wide-area (LPWA) use cases in cellular networks. NB-IoT design goals are extended coverage, low power and low cost devices, and massive connections. As a new radio access technology, it is necessary to analyze the possibilities NB-IoT provides to support different traffic and coverage needs. In this paper, we propose and validate an NB-IoT energy consumption model. The analytical model is based on a Markov chain. For the validation, an experimental setup is used to measure the energy consumption of two commercial NB-IoT user equipments (UEs) connected to a base station emulator. The evaluation is done considering three test cases. The comparison of the model and measurements is done in terms of the estimated battery lifetime and the latency needed to finish the control plane procedure. The conducted evaluation shows the analytical model performs well, obtaining a maximum relative error of the battery lifetime estimation between the model and the measurements of 21% for an assumed interarrival time (IAT) of 6 min.This work was supported in part by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under Project TEC2016-76795-C6-4-R and in part by the H2020 European Project TRIANGLE under Grant 688712

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)

    Coverage and Deployment Analysis of Narrowband Internet of Things in the Wild

    Full text link
    Narrowband Internet of Things (NB-IoT) is gaining momentum as a promising technology for massive Machine Type Communication (mMTC). Given that its deployment is rapidly progressing worldwide, measurement campaigns and performance analyses are needed to better understand the system and move toward its enhancement. With this aim, this paper presents a large scale measurement campaign and empirical analysis of NB-IoT on operational networks, and discloses valuable insights in terms of deployment strategies and radio coverage performance. The reported results also serve as examples showing the potential usage of the collected dataset, which we make open-source along with a lightweight data visualization platform.Comment: Accepted for publication in IEEE Communications Magazine (Internet of Things and Sensor Networks Series

    Massive Non-Orthogonal Multiple Access for Cellular IoT: Potentials and Limitations

    Full text link
    The Internet of Things (IoT) promises ubiquitous connectivity of everything everywhere, which represents the biggest technology trend in the years to come. It is expected that by 2020 over 25 billion devices will be connected to cellular networks; far beyond the number of devices in current wireless networks. Machine-to-Machine (M2M) communications aims at providing the communication infrastructure for enabling IoT by facilitating the billions of multi-role devices to communicate with each other and with the underlying data transport infrastructure without, or with little, human intervention. Providing this infrastructure will require a dramatic shift from the current protocols mostly designed for human-to-human (H2H) applications. This article reviews recent 3GPP solutions for enabling massive cellular IoT and investigates the random access strategies for M2M communications, which shows that cellular networks must evolve to handle the new ways in which devices will connect and communicate with the system. A massive non-orthogonal multiple access (NOMA) technique is then presented as a promising solution to support a massive number of IoT devices in cellular networks, where we also identify its practical challenges and future research directions.Comment: To appear in IEEE Communications Magazin
    corecore