11,444 research outputs found

    A Millikelvin Scanned Probe for Measurement of Nanostructures

    Full text link
    We demonstrate a scanning force microscope, based upon a quartz tuning fork, that operates below 100 mK and in magnetic fields up to 6 T. The microscope has a conducting tip for electrical probing of nanostructures of interest, and it incorporates a low noise cryogenic amplifier to measure both the vibrations of the tuning fork and the electrical signals from the nanostructures. At millikelvin temperatures the imaging resolution is below 1 um in a 22 um x 22 um range, and a coarse motion provides translations of a few mm. This scanned probe is useful for high bandwidth measurement of many high impedance nanostructures on a single sample. We show data locating an SET within an array and measure its coulomb blockade with a sensitivity of 2.6 x 10^-5 e/Hz^1/2.Comment: 5 pages, 5 figures, submitted to RS

    Near-field scanning microwave microscope for interline capacitance characterization of nanoelectronics interconnect

    Full text link
    We have developed a noncontact method for measurement of the interline capacitance in Cu/low-k interconnect. It is based on a miniature test vehicle with net capacitance of a few femto-Farads formed by two 20-\mu m-long parallel wires (lines) with widths and spacings the same as those of the interconnect wires of interest. Each line is connected to a small test pad. The vehicle impedance is measured at 4 GHz by a near-field microwave probe with 10 \mu m probe size via capacitive coupling of the probe to the vehicle's test pads. Full 3D finite element modeling at 4 GHz confirms that the microwave radiation is concentrated between the two wires forming the vehicle. An analytical lumped element model and a short/open calibration approach have been proposed to extract the interline capacitance value from the measured data. We have validated the technique on several test vehicles made with copper and low-k dielectric on a 300 mm wafer. The vehicles interline spacing ranges from 0.09 to 1 \mu m and a copper line width is 0.15 \mu m. This is the first time a near-field scanning microwave microscope has been applied to measure the lumped element impedance of a test vehicle

    An ultrahigh-vacuum cryostat for simultaneous scanning tunneling microscopy and magneto-transport measurements down to 400mK

    Full text link
    We present the design and calibration measurements of a scanning tunneling microscope setup in a 3He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pmrms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 mueV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 mueV, implying that the system operates close to the physical noise limit.Comment: 12 pages, 11 figure

    Effect of Substrate Support on Dynamic Graphene/Metal Electrical Contacts.

    Get PDF
    Recent advances in graphene and other two-dimensional (2D) material synthesis and characterization have led to their use in emerging technologies, including flexible electronics. However, a major challenge is electrical contact stability, especially under mechanical straining or dynamic loading, which can be important for 2D material use in microelectromechanical systems. In this letter, we investigate the stability of dynamic electrical contacts at a graphene/metal interface using atomic force microscopy (AFM), under static conditions with variable normal loads and under sliding conditions with variable speeds. Our results demonstrate that contact resistance depends on the nature of the graphene support, specifically whether the graphene is free-standing or supported by a substrate, as well as on the contact load and sliding velocity. The results of the dynamic AFM experiments are corroborated by simulations, which show that the presence of a stiff substrate, increased load, and reduced sliding velocity lead to a more stable low-resistance contact

    Self-supporting graphene films and their applications

    Get PDF
    The self-supporting monolayer material which is graphene has excited enormous interest over the ten years since its discovery due to its remarkable electrical, mechanical thermal and chemical properties. In this paper we describe our work to develop chemical vapour deposition methods to grow monolayer graphene on copper foil substrates and the subsequent transfer process. Raman microscopy, scanning electron microscopy and atomic force microscopy (AFM) are used to examine the quality of the transferred material. To demonstrate the process we describe transfer onto patterned SiO2/Si substrates which forms freely suspended graphene with focus on circular wells forming graphene drums. These show interesting mechanical properties which are being explored as nanomechanical resonators.UK NMS Programme, the EU EMRP (European Metrology Research Programme) projects MetNEMS and GraphOh

    Marked changes in electron transport through the blue copper protein azurin in the solid state upon deuteration

    Full text link
    Measuring electron transport (ETp) across proteins in the solid-state offers a way to study electron transfer (ET) mechanism(s) that minimizes solvation effects on the process. Solid state ETp is sensitive to any static (conformational) or dynamic (vibrational) changes in the protein. Our macroscopic measurement technique extends the use of ETp meas-urements down to low temperatures and the concomitant lower current densities, because the larger area still yields measurable currents. Thus, we reported previously a surprising lack of temperature-dependence for ETp via the blue copper protein azurin (Az), from 80K till denaturation, while ETp via apo-(Cu-free) Az was found to be temperature de-pendent \geq 200K. H/D substitution (deuteration) can provide a potentially powerful means to unravel factors that affect the ETp mechanism at a molecular level. Therefore, we measured and report here the kinetic deuterium isotope effect (KIE) on ETp through holo-Az as a function of temperature (30-340K). We find that deuteration has a striking effect in that it changes ETp from temperature independent to temperature dependent above 180K. This change is expressed in KIE values between 1.8 at 340K and 9.1 at \leq 180K. These values are particularly remarkable in light of the previously reported inverse KIE on the ET in Az in solution. The high values that we obtain for the KIE on the ETp process across the protein monolayer are consistent with a transport mechanism that involves through-(H-containing)-bonds of the {\beta}-sheet structure of Az, likely those of am-ide groups.Comment: 15 pages, 3 figures, 2 Supplementary figure

    Development and testing of a micromachined probe card.

    Get PDF
    This thesis is concerned with the design, fabrication and testing of micro scale probes. The probes were designed to act as temporary electrical connections to allow wafer level testing of integrated circuits. The work initially focused on the creation of free standing nickel cantilevers, angled up from the substrate with probe tips at the free end. These were fabricated using a novel method, combining pseudo grey scale lithography and thick photoresist sacrificial layers. Detailed analysis of the fabrication method, in particular the resist processing and lithography was undertaken and the limitations of the method explored.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore