700 research outputs found

    Investigating Low-complexity Architectural Issues under UBSS

    Get PDF
    Our Project aim is to develop a real time chip to process the sensor signals and separating the source signals, which is used in Health care like Autism. Autism is a disease which aects the child mental behavior. So If we analyze the signals form the brain so we can observe the how eectively the disease is cured. So to analyze the Autism we need EEG signals from almost 128 Leads from the scalp of child, which is dicult to do so. Thus we have to reduce the number of Leads used and at the same time we should get the all information as in the case of 128-Leads. Thus solving our problem is to solve Underdetermined Blind Source Separation (UBSS). And in some other cases we may have only one mixture signal (M=1), which is extreme case of UBSS, from which we have to extract the unknown sources, which is called Single channel Independent Component Analysis also called SCICA. In SCICA if we have N source signals then it is called ND-SCICA. In real time UBSS or SCICA problem we require a Digital chip which will separate the sources in real time case. So we require a chip which is High speed so that it will be suitable for real time applications and also it should be Recongurable so that it can work for dierent type of applications where the frame length of signals vary. So rst we investigated the architectural issues of Recongurable Discrete Hilbert Transform for UBSS where M is greater than one. Thus we proposed a high-speed and recongurable Discrete Hilbert Transform architecture design methodology targeting the real-time applications including Cyber-Physical systems, Internet of Things or Remote Health-Monitoring where the same chip-set needs to be used for various pur- poses under real-time scenario. By using this architecture we are able to get Discrete Hilbert Transform for any given M-point by re-using N-point Discrete Hilbert Trans- form as a kernel. Here N and M are multiple of 4 and N respectively. Subsequently we provide the architecture design details and compare the proposed architecture with the conventional state-of-the-art architecture. Thorough theoretical analysis and ex- vi perimental comparison results show that the proposed design is twice as fast and recongurability is also achieved simultaneously. After DHT, we proposed a new algorithm for ND-FastICA which is used for ex- treme case of UBSS where the number of mixture/sensor signals are only one. In this algorithm we used CORDIC based ND-FastICA which is recongurable so that the same chip can be used for dierent dimensioned FastICA

    10281 Abstracts Collection -- Dynamically Reconfigurable Architectures

    Get PDF
    From 11.07.10 to 16.07.10, Dagstuhl Seminar 10281 ``Dynamically Reconfigurable Architectures \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Efficient mapping of EEG algorithms

    Get PDF

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    DSP-enabled Reconfigurable Optical Network Devices and Architectures for Cloud Access Networks

    Get PDF
    To meet the ever-increasing bandwidth requirements, the rapid growth in highly dynamic traffic patterns, and the increasing complexity in network operation, whilst providing high power consumption efficiency and cost-effectiveness, the approach of combining traditional optical access networks, metropolitan area networks and 4-th generation (4G)/5-th generation (5G) mobile front-haul/back-haul networks into unified cloud access networks (CANs) is one of the most preferred “future-proof” technical strategies. The aim of this dissertation research is to extensively explore, both numerically and experimentally, the technical feasibility of utilising digital signal processing (DSP) to achieve key fundamental elements of CANs from device level to network architecture level including: i) software reconfigurable optical transceivers, ii) DSP-enabled reconfigurable optical add/drop multiplexers (ROADMs), iii) network operation characteristics-transparent digital filter multiple access (DFMA) techniques, and iv) DFMA-based passive optical network (PON) with DSP-enabled software reconfigurability. As reconfigurable optical transceivers constitute fundamental building blocks of the CAN’s physical layer, digital orthogonal filtering-based novel software reconfigurable transceivers are proposed and experimentally and numerically explored, for the first time. By making use of Hilbert-pair-based 32-tap digital orthogonal filters implemented in field programmable gate arrays (FPGAs), a 2GS/s@8-bit digital-to-analogue converter (DAC)/analogue-to-digital converter (ADC), and an electro-absorption modulated laser (EML) intensity modulator (IM), world-first reconfigurable real-time transceivers are successfully experimentally demonstrated in a 25km IMDD SSMF system. The transceiver dynamically multiplexes two orthogonal frequency division multiplexed (OFDM) channels with a total capacity of 3.44Gb/s. Experimental results also indicate that the transceiver performance is fully transparent to various subcarrier modulation formats of up to 64-QAM, and that the maximum achievable transceiver performance is mainly limited by the cross-talk effect between two spectrally-overlapped orthogonal channels, which can, however, be minimised by adaptive modulation of the OFDM signals. For further transceiver optimisations, the impacts of major transceiver design parameters including digital filter tap number and subcarrier modulation format on the transmission performance are also numerically explored. II Reconfigurable optical add/drop multiplexers (ROADMs) are also vital networking devices for application in CANs as they play a critical role in offering fast and flexible network reconfiguration. A new optical-electrical-optical (O-E-O) conversion-free, software-switched flexible ROADM is extensively explored, which is capable of providing dynamic add/drop operations at wavelength, sub-wavelength and orthogonal sub-band levels in software defined networks incorporating the reconfigurable transceivers. Firstly, the basic add and drop operations of the proposed ROADMs are theoretically explored and the ROADM designs are optimised. To crucially validate the practical feasibility of the ROADMs, ROADMs are experimentally demonstrated, for the first time. Experimental results show that the add and drop operation performances are independent of the sub-band signal spectral location and add/drop power penalties are <2dB. In addition, the ROADMs are also robust against a differential optical power dynamic range of >2dB and a drop RF signal power range of 7.1dB. In addition to exploring key optical networking devices for CANs, the first ever DFMA PON experimental demonstrations are also conducted, by using two real-time, reconfigurable, OOFDM-modulated optical network units (ONUs) operating on spectrally overlapped multi-Gb/s orthogonal channels, and an offline optical line terminal (OLT). For multipoint-to-point upstream signal transmission over 26km SSMF in an IMDD DFMA PON, experiments show that each ONU achieves a similar upstream BER performance, excellent robustness to inter-ONU sample timing offset (STO) and a large ONU launch power variation range. Given the importance of IMDD DFMA-PON channel frequency response roll-off, both theoretical and experimental explorations are undertaken to investigate the impact of channel frequency response roll-off on the upstream transmission of the DFMA PON system Such work provides valuable insights into channel roll-off-induced performance dependencies to facilitate cost-effective practical network/transceiver/component designs
    corecore