1,968 research outputs found

    Genetic aspects of conservation and management of the Eurasian Curlew Numenius arquata

    Get PDF
    Decades of decline have triggered an AEWA action plan and numerous conservation and management projects across the range of Eurasian Curlew Numenius arquata. Several projects include DNA studies, but more have an untapped potential to collect and analyse DNA. This document intends to promote DNA studies in Eurasian Curlew projects, in particular through pointing out the broad array of useful DNA samples that projects can collect for current and future use, often at low costs and without negatively affecting the birds. The document also provides an overview of DNA analysis methods, and advice on how to fit DNA studies sustainably into socio-economical and ethical frameworks. Additionally, the document contains numerous hands-on practical advice and an extensive reference list. The result is a long text, but we hope its structure helps you to navigate smoothly to the parts of your interest, whatever role you have or plan to play in Eurasian Curlew conservation and management projects

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    Low-power wide-area networks : design goals, architecture, suitability to use cases and research challenges

    Get PDF
    Previous survey articles on Low-Powered Wide-Area Networks (LPWANs) lack a systematic analysis of the design goals of LPWAN and the design decisions adopted by various commercially available and emerging LPWAN technologies, and no study has analysed how their design decisions impact their ability to meet design goals. Assessing a technology's ability to meet design goals is essential in determining suitable technologies for a given application. To address these gaps, we have analysed six prominent design goals and identified the design decisions used to meet each goal in the eight LPWAN technologies, ranging from technical consideration to business model, and determined which specific technique in a design decision will help meet each goal to the greatest extent. System architecture and specifications are presented for those LPWAN solutions, and their ability to meet each design goal is evaluated. We outline seventeen use cases across twelve domains that require large low power network infrastructure and prioritise each design goal's importance to those applications as Low, Moderate, or High. Using these priorities and each technology's suitability for meeting design goals, we suggest appropriate LPWAN technologies for each use case. Finally, a number of research challenges are presented for current and future technologies. © 2013 IEEE

    Recreation, tourism and nature in a changing world : proceedings of the fifth international conference on monitoring and management of visitor flows in recreational and protected areas : Wageningen, the Netherlands, May 30-June 3, 2010

    Get PDF
    Proceedings of the fifth international conference on monitoring and management of visitor flows in recreational and protected areas : Wageningen, the Netherlands, May 30-June 3, 201

    Endangered Species Bulletin, January/February 2003 - Vol. XXVIII No. 1

    Get PDF
    In this issue: 4 A Century of Conservation 9 Hakalau Forest National Wildlife Refuge 12 Refuges Are a Flight Path to Recovery 14 An Amphibious Assault 18 Community Helps Save Laguna Atascosa’s Wildlife 20 The Key Deer: Back From the Brink 22 Research on Fox Squirrel Reaps Rewards 24 Refuge for an Ice Age Survivor 27 “Habitats” Featured on Geography Action! 28 Bringing Tiger Beetles Together 30 Share the Beach: Teamwork for Turtles 32 The Treasures of the Ozark Plateau 34 The Dynamic Dunes 36 This Partnership is for the Birds! 38 Hard Work Brings Results at Chincoteagu

    Internet of Things (IoT): Societal Challenges & Scientific Research Fields for IoT

    Get PDF
    International audienceJust as the Internet radically reshaped society, the Internet of Things (IoT) willhave an impact on all areas of human life: from our homes, vehicles, workplacesand factories, to our cities and towns, agriculture and healthcare systems. It willalso affect all levels of society (individuals, companies and state-level), from urbanto rural and the natural world beyond. This makes it essential to have a properunderstanding of IoT and the challenges which relate to it. The primary aims ofthis document are to (i) determine the scope of IoT, its origins, current developments and perspectives, and (ii) identify the main societal, technical and scientific challenges linked to IoT.It seems inevitable that IoT will become increasingly omnipresent. Indeed, itis set to penetrate every aspect of all of our lives, connecting everything (billionsof new heterogeneous machines communicating with each other) and measuringeverything: from the collective action we take at a global level, right down to oursmallest individual physiological signals, in real-time. This is a double-edged sword,in that it simultaneously gives people cause for hope (automation, ­optimisation,innovative new functionalities etc.) and cause for fear (surveillance, dependency,cyberattacks, etc.). Given the ever-evolving nature of the IoT, new challenges linked to privacy, transparency, security appear, while new civil and industrialresponsibilities are starting to emerge.IoT is centred around an increasingly complex set of interlinked concepts andembedded technologies. At an industrial level, this growing complexity is makingthe idea of having full control over all components of IoT increasingly difficult, oreven infeasible. However, as a society, we must get to grips with the technologicalfoundations of IoT. One challenge for education will therefore be to graduallyincrease awareness of IoT, both in order to protect individuals’ sovereignty andfree will, and to initiate the training of our future scientists and technicians. Apublic research institute such as Inria can contribute towards understandingand explaining the technological foundations of IoT, in addition to preservingsovereignty in Europe.IoT will inevitably increase dependency on certain types of embeddedt ­ echno­logy. It is hence necessary to identify the new risks that entail, and todevise new strategies in order to take full advantage of IoT, while minimising theserisks. Similarly to the situation in other domains where one must continually seekto preserve ethics without hindering innovation, creating a legal framework forIoT is both necessary and challenging. It nevertheless seems clear already thatthe best way of facing up to industrial giants or superpowers is to take action atthe EU level, as shown by recent examples such as GDPR. Furthermore, given thegrowing influence of technological standards on society, playing an active rolein the process of standardising IoT technology is essential. Open standards andopen source – conceived as a common public good – will be pivotal for IoT, justas they have been for the Internet. Last but not least, massive use of IoT can helpbetter capture and understand the environmental challenges we are ­currentlyfacing – it is also expected IoT will help to mitigate these challenges. The goals inthis context are not only to reduce the quantities of natural resources consumedby IoT (for production, deployment, maintenance and recycling). We must alsoaim to more accurately evaluate the overall net benefit of IoT on the environment,at a global level. This requires determining and subtracting IoT’s environmentalcosts from its (measured) benefits, which is currently a challenge. The growingimpact of IoT underscores the importance of remaining at the cutting edge whenit comes to scientific research and technological development. This documenttherefore aims to (i) highlight the wide range of research fields which are fundamental to IoT, and(ii) take stock of current and future research problems in each of these fields. A number of links are made throughout the document to contributionsmade by Inria. These contributions are, by their nature, diverse (basic and appliedresearch, open source software, startup incubation) and concern the majority ofresearch fields on which IoT is based

    SPARC 2017 retrospect & prospects : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2017 SPARC conference. This year we not only celebrate the work of our PGRs but also the 50th anniversary of Salford as a University, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 130 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to exploit this great opportunity to engage with researchers working in different subject areas to your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    Mención Internacional en el título de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio Fernández Anta.- Vocal: Santiago Zazo Bell

    Development of genetic tools for managing populations of the Southern white rhinoceros (Ceratotherium simum simum)

    Get PDF
    The southern white rhinoceros (SWR) is one of five extant species of rhinoceros. The species experienced historical bottleneck due to unrestricted hunting and was on the brink of extinction during the end of nineteenth century, with only one population remaining in South Africa. This population was intensively protected and as it subsequently increased, it became the source of SWR for all of Southern Africa. With advances in immobilisation and translocation techniques, a surplus SWRs were relocated to the former range states of the species. Therefore, most or all modern populations of SWRs originated from the single founder population. As in other former range states, Botswana re-established SWR populations, but poaching remained an imminent threat to the national herd and the species was almost wiped out for a second time. In response to this threat, the Department of Wildlife and National Parks of Botswana (DWNP) began to capture free ranging animals and relocate them into enclosed reserves where they could be protected intensively by anti-poaching teams. Subsequently the population size of the national herd has been increasing due to successful breeding together with the continued introduction of SWRs from South Africa. Although this conservation strategy has been successful, it has generated many fragmented populations, which required regular exchanges of animals to prevent inbreeding. However, selection of animals for translocation has been made based on observational data about the relationships among animals and genetic information has rarely been used. The efficient identification of candidates for translocation, requires an accurate and complete pedigree to determine the individuals with high risk of producing inbred progeny. In this thesis, three populations of SWRs in Botswana (Botswana1, Botswana2, and Botswana3) were used as models to develop genetic tools that would facilitate metapopulation management. The purpose of Chapter 2 was to integrate previously characterised microsatellites (MS) genotypes with an incomplete, field-observed pedigree to make inferences about mean kinship and basic demographic data that could be used to inform translocation programmes for SWR. Level of heterozygosity and genetic diversity of the population were not as low as initially expected based on the severe bottleneck, but the population showed a very low mean number of alleles per locus. Using several different strategies for exclusion of unlikely parents, parental pairs of 29 out of 45 offspring could be assigned confidently. The combined pedigree was constructed from the assignable parent-offspring relationships and subsequently used to estimate kinship coefficients. Based on population mean kinship (MK), eight bulls with high individual MK could be identified as the best candidates for translocation. The pedigree was further used to estimate population demographic parameters; importantly, the reproductive dominance of the bulls was not as skewed as expected after the original dominant bull was removed, suggesting that closed populations can maintain multiple, simultaneously breeding males. Because the currently available markers (i.e. microsatellites) did not provide sufficient analytical power to construct a complete pedigree, a sequencing method that would allow marker discovery and genotyping in non-model species was required. A commonly used complexity reduction approach (double digestion restriction-associated DNA sequencing; ddRADseq) for identifying genome-wide single nucleotide polymorphisms (SNPs) was initially attempted. However, signs of DNA degradation were evident for nearly one third of the samples, which made the ddRADseq approach impractical. Thus, in Chapter 3, I tested the efficiency of an approach (RADcapture) that uses hybrid sequence capture to enrich the genome for SNPs identified by ddRADseq conducted on a set of high-quality DNA extractions. A total of 32 samples was chosen based on their molecular weight judged from 1% agarose gel electrophoresis; these were divided into two groups corresponding to their qualities. RADcapture identified 6,481 SNPs and performed equally well in both groups of samples, and there was no relationship between the quality of samples and the performance of the protocol. This suggested that hybrid capture could be useful for resolving SNPs in both high- and low-quality samples. In Chapter 4, RADcapture was applied to a collection of samples from the three managed populations to assess the utility of applying this approach to population management across metapopulation. Using RADcapture, 302 SNPs could be genotyped consistently across all individuals. For the Botswana1, these markers were used for parentage analysis, for comparison with the combined pedigree in Chapter 2, and for construction a consensus pedigree. Seven offspring for which MS were not effective could be assigned using SNPs, indicating better resolution by SNPs. The consensus pedigree could be constructed and was subsequently used to estimate pedigree-based kinship coefficients that suggested six and eight individuals as the best candidates for translocation and for breeding, respectively. Four of the six candidates for translocation were male; of which one were in agreement with the suggestions made in Chapter 2, the other two were the SNP-assigned fathers that involved four cases that SNPs provided better resolution. This suggested the potential effects of pedigree completeness on the candidates identified. RADcapture data were also used to estimate marker-based kinship coefficients for all three populations. For the Botswana1 population, marker-based kinships identified different individuals from the candidates suggested by the pedigree-based MK. The disagreements suggested that the latter optimised genetic contributions of animals, whereas the marker-based MK might instead promote the individuals that carried rare alleles. No candidates could be identified for Botswana2 or Botswana3 because there were no individuals with individual MK above and below the thresholds. Based on between-population MKs estimated from RADcapture data of the three populations, exchanges of animals between any pair of them would reduce population MK of the recipients. The principal component analysis revealed no genetic clusters observed across individuals from the three populations. Chapter 4 demonstrated the potential applications of RADcapture for parentage assignment and for identification of the candidates for translocation and breeding; however, completeness of the pedigree and the methods used to estimate kinships could affect the population management regarding the candidates identified. In summary, the key outcomes of this thesis were 1) resolving the pedigree of a SWR population that has been an important source of animals for the national reintroduction programme in Botswana; 2) development of a sequencing method that allows the retrieval of genetic markers from DNA of various qualities; 3) demonstration of quantifiable methods (i.e. management based on kinship coefficients) that showed the potential to facilitate population management to prevent inbreeding in fragmented populations of SWRs; and 4) initiation of a genomic database obtained from RADcapture (i.e. RADcapture sequences) that could be used as the raw materials for various purposes of future applications (e.g. development of SNP array, wildlife forensics). These tools for genetic-based population management can now be applied to minimise inbreeding which is currently of particular concern for fragmented SWR populations. Most importantly, this thesis demonstrated approaches that are not applicable to only SWR, but can equally be applied in conservation programmes of other endangered species, i.e. sequencing methods for non-model species, methods for identification of candidates for translocation and breeding. The key outcomes present in this thesis should improve efficiency of the conservation of the species as well as other endangered species

    Drones and Geographical Information Technologies in Agroecology and Organic Farming

    Get PDF
    Although organic farming and agroecology are normally not associated with the use of new technologies, it’s rapid growth, new technologies are being adopted to mitigate environmental impacts of intensive production implemented with external material and energy inputs. GPS, satellite images, GIS, drones, help conventional farming in precision supply of water, pesticides, fertilizers. Prescription maps define the right place and moment for interventions of machinery fleets. Yield goal remains the key objective, integrating a more efficient use or resources toward an economic-environmental sustainability. Technological smart farming allows extractive agriculture entering the sustainability era. Societies that practice agroecology through the development of human-environmental co-evolutionary systems represent a solid model of sustainability. These systems are characterized by high-quality agroecosystems and landscapes, social inclusion, and viable economies. This book explores the challenges posed by the new geographic information technologies in agroecology and organic farming. It discusses the differences among technology-laden conventional farming systems and the role of technologies in strengthening the potential of agroecology. The first part reviews the new tools offered by geographic information technologies to farmers and people. The second part provides case studies of most promising application of technologies in organic farming and agroecology: the diffusion of hyperspectral imagery, the role of positioning systems, the integration of drones with satellite imagery. The third part of the book, explores the role of agroecology using a multiscale approach from the farm to the landscape level. This section explores the potential of Geodesign in promoting alliances between farmers and people, and strengthening food networks, whether through proximity urban farming or asserting land rights in remote areas in the spirit of agroecological transition. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons 4.0 license
    corecore