266 research outputs found

    Robust feedback model predictive control of norm-bounded uncertain systems

    Get PDF
    This thesis is concerned with the Robust Model Predictive Control (RMPC) of linear discrete-time systems subject to norm-bounded model-uncertainty, additive disturbances and hard constraints on the input and state. The aim is to design tractable, feedback RMPC algorithms that are based on linear matrix inequality (LMI) optimizations. The notion of feedback is very important in the RMPC control parameterization since it enables effective disturbance/uncertainty rejection and robust constraint satisfaction. However, treating the state-feedback gain as an optimization variable leads to non-convexity and nonlinearity in the RMPC scheme for norm-bounded uncertain systems. To address this problem, we propose three distinct state-feedback RMPC algorithms which are all based on (convex) LMI optimizations. In the first scheme, the aforementioned non-convexity is avoided by adopting a sequential approach based on the principles of Dynamic Programming. In particular, the feedback RMPC controller minimizes an upper-bound on the cost-to-go at each prediction step and incorporates the state/input constraints in a non-conservative manner. In the second RMPC algorithm, new results, based on slack variables, are proposed which help to obtain convexity at the expense of only minor conservatism. In the third and final approach, convexity is achieved by re-parameterizing, online, the norm-bounded uncertainty as a polytopic (additive) disturbance. All three RMPC schemes drive the uncertain-system state to a terminal invariant set which helps to establish Lyapunov stability and recursive feasibility. Low-complexity robust control invariant (LC-RCI) sets, when used as target sets, yield computational advantages for the associated RMPC schemes. A convex algorithm for the simultaneous computation of LC-RCI sets and the corresponding controller for norm-bounded uncertain systems is also presented. In this regard, two novel results to separate bilinear terms without conservatism are proposed. The results being general in nature also have application in other control areas. The computed LC-RCI sets are shown to have substantially improved volume as compared to other schemes in the literature. Finally, an output-feedback RMPC algorithm is also derived for norm-bounded uncertain systems. The proposed formulation uses a moving window of the past input/output data to generate (tight) bounds on the current state. These bounds are then used to compute an output-feedback RMPC control law using LMI optimizations. An output-feedback LC-RCI set is also designed, and serves as the terminal set in the algorithm.Open Acces

    Robust Constrained Interpolating Control of Interconnected Systems

    Get PDF
    This paper presents a decentralised interpolating control scheme for the robust constrained control of uncertain linear discrete-time interconnected systems with local state and control constraints. The control law of each distinct subsystem relies on the gentle interpolation between a local high-gain controller with a global low-gain controller. Both controllers benefit from the computation of separable robust invariant sets for local control design, which overcomes the computational burden of large-scale systems. Another advantage is that for each subsystem both low-and high-gain controllers can be efficiently determined off-line, while the inexpensive interpolation between them is performed on-line. For the interpolation, a new low-dimensional linear programming problem is solved at each time instant. Proofs of recursive feasibility and robust asymptotic stability of the proposed control are provided. A numerical example demonstrates the robustness of decentralised interpolating control against model uncertainty and disturbances. The proposed robust control is computationally inexpensive, and thus it is well suited for large-scale applications

    Computation of Robust Control Invariant Sets with Predefined Complexity for Uncertain Systems

    Get PDF
    This paper presents an algorithm that computes polytopic robust control-invariant (RCI) sets for rationally parameter-dependent systems with additive disturbances. By means of novel LMI feasibility conditions for invariance along with a newly developed method for volume maximization, an iterative algorithm is proposed for the computation of RCI sets with maximized volumes. The obtained RCI sets are symmetric around the origin by construction and have a user-defined level of complexity. Unlike many similar approaches, fixed state feedback structure is not imposed. In fact, a specific control input is obtained from the LMI problem for each extreme point of the RCI set. The outcomes of the proposed algorithm can be used to construct a piecewise-affine controller based on offline computations

    Computing control invariant sets is easy

    Full text link
    In this paper we consider the problem of computing control invariant sets for linear controlled systems with constraints on the input and on the states. We focus in particular on the complexity of the computation of the N-step operator, given by the Minkowski addition of sets, that is the basis of many of the iterative procedures for obtaining control invariant sets. Set inclusions conditions for control invariance are presented that involve the N-step sets and are posed in form of linear programming problems. Such conditions are employed in algorithms based on LP problems that allow to overcome the complexity limitation inherent to the set addition and can be applied also to high dimensional systems. The efficiency and scalability of the method are illustrated by computing in less than two seconds an approximation of the maximal control invariant set, based on the 15-step operator, for a system whose state and input dimensions are 20 and 10 respectively
    corecore