835 research outputs found

    Energy efficient D2D communications in dynamic TDD systems

    Full text link
    Network-assisted device-to-device communication is a promising technology for improving the performance of proximity-based services. This paper demonstrates how the integration of device-to-device communications and dynamic time-division duplex can improve the energy efficiency of future cellular networks, leading to a greener system operation and a prolonged battery lifetime of mobile devices. We jointly optimize the mode selection, transmission period and power allocation to minimize the energy consumption (from both a system and a device perspective) while satisfying a certain rate requirement. The radio resource management problems are formulated as mixed-integer nonlinear programming problems. Although they are known to be NP-hard in general, we exploit the problem structure to design efficient algorithms that optimally solve several problem cases. For the remaining cases, a heuristic algorithm that computes near-optimal solutions while respecting practical constraints on execution times and signaling overhead is also proposed. Simulation results confirm that the combination of device-to-device and flexible time-division-duplex technologies can significantly enhance spectrum and energy-efficiency of next generation cellular systems.Comment: Submitted to IEEE Journal of Selected Areas in Communication

    Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave) communications are considered as a promising technology for the fifth generation mobile networks. Mm-wave has the potential to provide multiple gigabit data rate due to the broad spectrum. Unfortunately, additional free space path loss is also caused by the high carrier frequency. On the other hand, mm-wave signals are sensitive to obstacles and more vulnerable to blocking effects. To address this issue, highly directional narrow beams are utilized in mm-wave networks. Additionally, device-to-device (D2D) users make full use of their proximity and share uplink spectrum resources in HCNs to increase the spectrum efficiency and network capacity. Towards the caused complex interferences, the combination of D2D-enabled HCNs with small cells densely deployed and mm-wave communications poses a big challenge to the resource allocation problems. In this paper, we formulate the optimization problem of D2D communication spectrum resource allocation among multiple micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the totally different propagation conditions on the two bands, a heuristic algorithm is proposed to maximize the system transmission rate and approximate the solutions with sufficient accuracies. Compared with other practical schemes, we carry out extensive simulations with different system parameters, and demonstrate the superior performance of the proposed scheme. In addition, the optimality and complexity are simulated to further verify effectiveness and efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog

    Energy-Efficient Resource Allocation for Device-to-Device Underlay Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks is expected to bring significant benefits for utilizing resources, improving user throughput and extending battery life of user equipments. However, the allocation of radio and power resources to D2D communication needs elaborate coordination, as D2D communication can cause interference to cellular communication. In this paper, we study joint channel and power allocation to improve the energy efficiency of user equipments. To solve the problem efficiently, we introduce an iterative combinatorial auction algorithm, where the D2D users are considered as bidders that compete for channel resources, and the cellular network is treated as the auctioneer. We also analyze important properties of D2D underlay communication, and present numerical simulations to verify the proposed algorithm.Comment: IEEE Transactions on Wireless Communication

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    Radio Resource Allocation for Device-to-Device Underlay Communication Using Hypergraph Theory

    Full text link
    Device-to-Device (D2D) communication has been recognized as a promising technique to offload the traffic for the evolved Node B (eNB). However, the D2D transmission as an underlay causes severe interference to both the cellular and other D2D links, which imposes a great technical challenge to radio resource allocation. Conventional graph based resource allocation methods typically consider the interference between two user equipments (UEs), but they cannot model the interference from multiple UEs to completely characterize the interference. In this paper, we study channel allocation using hypergraph theory to coordinate the interference between D2D pairs and cellular UEs, where an arbitrary number of D2D pairs are allowed to share the uplink channels with the cellular UEs. Hypergraph coloring is used to model the cumulative interference from multiple D2D pairs, and thus, eliminate the mutual interference. Simulation results show that the system capacity is significantly improved using the proposed hypergraph method in comparison to the conventional graph based one.Comment: 27 pages,10 figure

    Spectrum Resource Management and Interference Mitigation for D2D Communications with Awareness of BER Constraint in mmWave 5G Underlay Network

    Full text link
    The work presented in this paper deals with the issue of massive demands for higher capacity. For that matter, we investigate the spectrum resource management in outdoor mmWave cell for the uplink of cellular and D2D communications. Indeed, we provide a first insight how to optimize the system performance in terms of achievable throughput while realizing a compromise between the large number of admitted devices and the generated interference constraint. We propose a mathematical formulation of the optimization objective which falls in the mixed integer-real optimization scheme. To overcome its complexity, we apply a heuristic algorithm and test its efficiency through simulation results with a particular regard to the BER impact in the QoS.Comment: Accepted in IEEE Symposium on Computers and Communications June, 201

    Energy Efficient Power and Channel Allocation in Underlay Device to Multi Device Communications

    Full text link
    In this paper, we optimize the energy efficiency (bits/s/Hz/J) of device-to-multi-device (D2MD) wireless communications. While the device-to-device scenario has been extensively studied to improve the spectral efficiency in cellular networks, the use of multicast communications opens the possibility of reusing the spectrum resources also inside the groups. The optimization problem is formulated as a mixed integer non-linear joint optimization for the power control and allocation of resource blocks (RBs) to each group. Our model explicitly considers resource sharing by letting co-channel transmission over a RB (up to a maximum of r transmitters) and/or transmission through s different channels in each group. We use an iterative decomposition approach, using first matching theory to find a stable even if sub-optimal channel allocation, to then optimize the transmission power vectors in each group via fractional programming. Additionally, within this framework, both the network energy efficiency and the max-min individual energy efficiency are investigated. We characterize numerically the energy-efficient capacity region, and our results show that the normalized energy efficiency is nearly optimal (above 90 percent of the network capacity) for a wide range of minimum-rate constraints. This performance is better than that of other matching-based techniques previously proposed

    Relay Assisted Device-to-Device Communication: Approaches and Issues

    Full text link
    Enabling technologies for 5G and future wireless communication have attracted the interest of industry and research communities. One of such technologies is Device-to-Device (D2D) communication which exploits user proximity to offer spectral efficiency, energy efficiency and increased throughput. Data offloading, public safety communication, context aware communication and content sharing are some of the use cases for D2D communication. D2D communication can be direct or through a relay depending on the nature of the channel in between the D2D devices. Apart from the problem of interference, a key challenge of relay aided D2D communication is appropriately assigning relays to a D2D pair while maintaining the QoS requirement of the cellular users. In this article, relay assisted D2D communication is reviewed and research issues are highlighted. We also propose matching theory with incomplete information for relay allocation considering uncertainties which the mobility of the relay introduces to the set up

    Optimal Virtualized Inter-Tenant Resource Sharing for Device-to-Device Communications in 5G Networks

    Get PDF
    Device-to-Device (D2D) communication is expected to enable a number of new services and applications in future mobile networks and has attracted significant research interest over the last few years. Remarkably, little attention has been placed on the issue of D2D communication for users belonging to different operators. In this paper, we focus on this aspect for D2D users that belong to different tenants (virtual network operators), assuming virtualized and programmable future 5G wireless networks. Under the assumption of a cross-tenant orchestrator, we show that significant gains can be achieved in terms of network performance by optimizing resource sharing from the different tenants, i.e., slices of the substrate physical network topology. To this end, a sum-rate optimization framework is proposed for optimal sharing of the virtualized resources. Via a wide site of numerical investigations, we prove the efficacy of the proposed solution and the achievable gains compared to legacy approaches.Comment: 10 pages, 7 figure

    Resource Optimization in Device-to-Device Cellular Systems Using Time-Frequency Hopping

    Full text link
    We develop a flexible and accurate framework for device-to-device (D2D) communication in the context of a conventional cellular network, which allows for time-frequency resources to be either shared or orthogonally partitioned between the two networks. Using stochastic geometry, we provide accurate expressions for SINR distributions and average rates, under an assumption of interference randomization via time and/or frequency hopping, for both dedicated and shared spectrum approaches. We obtain analytical results in closed or semi-closed form in high SNR regime, that allow us to easily explore the impact of key parameters (e.g., the load and hopping probabilities) on the network performance. In particular, unlike other models, the expressions we obtain are tractable, i.e., they can be efficiently optimized without extensive simulation. Using these, we optimize the hopping probabilities for the D2D links, i.e., how often they should request a time or frequency slot. This can be viewed as an optimized lower bound to other more sophisticated scheduling schemes. We also investigate the optimal resource partitions between D2D and cellular networks when they use orthogonal resources
    • …
    corecore